

TECHNICAL CATALOG

# **Ekip UP**

The low voltage digital unit for next generation of plants



# **Ekip UP**

# Consultation guide



Chapter 1

### Main characteristics

Overview of the Ekip UP family, distinctive features of the series, product conformity and service.



Chapter 6

### **Dimensional drawings**

Overall dimensions for Ekip UP family and description of mounting.



Chapter 2

### The ranges

Latest generation of Ekip UP series for a new all-in-one concept.



Chapter 7

### Wiring diagrams

Wiring diagrams of the family and of the accessories.



Chapter 3

### Software functions

New generation of functionalities ready for every type of system and simple to use.



Chapter 8

### **Ordering codes**

Ordering codes with configuration examples.



Chapter 4



**Commissioning and Connectivity** 

Supervision, Energy Management and complete integration in the systems with the possibility of communicating with several protocols and with internet.



Chapter 5



Accessories

Accessories for Ekip UP family (signaling, control, connectivity, measurements, protection, etc).

# **Table of contents**

SOFTWARE

**FUNCTIONS** 

THE RANGES

COMMISSIONING
AND CONNECTIVITY

ACCESSORIES

DIMENSIONS

WIRING DIAGRAMS

ORDERING CODES

**EKIP UP** THE LOW VOLTAGE DIGITAL UNIT FOR NEXT GENERATION OF PLANTS

# **Main characteristics**

| <b>1/</b> 2 | Designed for the latest market trends |
|-------------|---------------------------------------|
| <b>1/</b> 4 | Leveraging our digital innovation     |
| <b>1/</b> 6 | One unit, more markets                |
| <b>1/</b> 8 | Product overview                      |

## Designed for the latest market trends

New electrical grid architectures and system device connectivity are changing the energy flows.

Power distribution is continuously evolving from the traditional grid architecture to the new system design. The centralized grid with top-down energy flow has been changing towards the distributed multi-source configuration.

Power grids combines more and more the presence of big size powerhouses, spread-out high voltage transmission lines and bulk load centres together with a constellation of distributed areas of local production and consumption at the distribution layer. Sections of the electrical network have bidirectional energy flows thanks to low voltage generation resources installed in buildings, factories and communities.

In particular, the growing of renewables is promoted by technology cost and environmental pollution emissions reductions in comparison with fuel fossil sources.

The **Microgrid** concept is the answer to this market trend. Distributed energy resources and loads mainly in low voltage network defined by specific boundaries that can work together in a controlled and coordinated way, either connected to weak/strong main grid or in "islanded" mode depending on the scenario. Speeding up the innovation, microgrids simplify the higher power distribution complexity ensuring lower cost, optimizing the resources and the services.

Today more than 1.5GW of low-voltage Microgrids are installed worldwide and these will increase to more than 6GW by 2020.



0

In order to get as much as possible the energy efficiency and self-consumption, in parallel of the new electrical layouts, communication networks and **Internet of Things** (IoT) technology unlocks the power of data to make people understand energy consumption and allocate resources. Indeed, connectivity has become in the last ten years a must to have in energy distribution.

Up to 33 billion internet-connected devices will be used by 2020, that means 4.3 devices for every person on the planet. This trend regards not only the consumer but also the business world.

The digital transformation is coming to power. What cannot be missed are, of course, the switching devices, like the circuit breakers or the switch disconnectors located at the different Microgrid electrical points, so that they naturally become the leaders for the grid speed evolution.

In the last ten years, more than 50M of Air Circuit Breakers and 300M of Molded Case Circuit Breakers have been installed worldwid from all the different brands, without advanced features for monitoring or resources optimization.

As almost more than 95% are conventional devices, there is a big potential for technology upgrade on existing facilities, avoiding big impact on investment as in the case of device replacement. In addition, around 15% of switching devices are not equipped with any electronics on board.



## Leveraging our digital innovation

Ekip UP is the low-voltage digital unit able to monitor, protect and control the next generation of plants.

Thanks to the built-in software-based function, part of ABB Ability™ portfolio of connected and software enabled solutions, Ekip UP digitizes the plant performance. Sharing the electronics capabilities of "all-in-one" ABB platform, Ekip UP enables the integration of advanced functionalities into the switchgear.

The traditional approaches of industrialists towards the installed base is quite conservative. The cultural inertia for the innovation and the barrier of retrofitting cost make them not change the power distribution philosophy, loosing all the chances offered by new solutions. In case of switchgear with traditional breakers, still suitable for the mechanical performances but old for the electronics capabilities, trusting the end user to replace the whole device is more than complex. On the other side, there are many projects that need customization and engineering efforts, which are not usually addressed to the solutions embedded in switching devices but, generally, are related to external devices. Ekip UP edge units are fitted for all the market opportunities.

As multifunctional unit, Ekip UP monitors, protects and controls the power distribution and automation applications. Thanks to its plug&play design, it guarantees ease of use, modularity and flexibility.

### Metering

- Measurement capability of main energy parameters
- Network analyzer to evaluate the power quality.
- Datalogger based on event triggers for fast fault diagnosis.
- Connectivity for system integration up to 8 field-bus protocols, plus a property bus for power automation applications that require advanced cyber-security.
- Embedded gateway that ensures power understanding by cloud-based energy management system.

### Protection

- Distribution protection (mains and feeders) based on current and voltage measurement.
- Generator protection and interface protection systems.
- Adaptive threshold according to grid topology.
- Digital selectivity for resource coordination.
- Load shedding algorithms to prevent blackouts.
- Programmable logics to manage transfer-switching operations and maximize service continuity.
- Synchrocheck function of different power sources inside.

### Control

 Power management systems to optimize plant resources and enable Demand Response applications.

The evolution of ABB external units sets a new standard for the multi-functional relays' market, leveraging the value of digital innovations.



0

Ekip UP makes every switchgear smart adding value for everyone.



### **UP-date basic switchgear**

Ekip UP updates basic switchboards with new monitoring, protection and power control solutions.

- Compatible with all switching devices, ABB or
- 100% applicable for every low-voltage scenario.



### **UP-load your electrical system**

Ekip UP uploads your system data to the cloud-connected ABB Ability platform.

- Enabling full microgrid control.
- In less than 10 minutes without any external gateway.



### **UP-grade your facilities**

Ekip UP is the unit that upgrades the electronics of old facilities making them digital.

- 40% operational cost saving via the energy management system and predictive maintenance.
- Cost-effective solution compared with traditional retrofitting approach.



### **Maximize UP-time**

Ekip UP maximizes uptime for system integration as a plug & play unit.with easy installation

- 50% time saving when retrofitting, with reduced impact on switchboard design.
- Almost zero downtime during commissioning.

For example of integration of Ekip UP with switches and fusegear, please refer to the brochure "ABB Ability in action" - 1SCC011013C0201.



### One unit, more markets

Ekip UP is ready to meet any requirement and cover spread market opportunities worldwide.

### **Commercial buildings**

Ekip UP monitors the energy consumption of existing hotels, shopping malls, campuses or office facilities that become imediately connected to the cloud.

Thanks to the remote energy management system and smart power management algorithm embedded in the digital unit, facility managers and end users can increase the energy efficiency of the electrical plant. Even in new infrastructures with e-mobility chargers, Ekip UP is the solution to understand current flows, enabling peak shaving and load shifting strategies.

### Industrial and utility plants

Ekip UP protects plant power systems and automation processes with the direct interface to every switching devices. The unit satisfies a complete list of distribution and generation ANSI protections as well as it embeds programmable logic.

For example, sending tripping commands to switch disconnectors is a typical case for oil & gas industries. Besides, Ekip UP can also add granted backup protections to breakers so to increase reliability with complete redundancy, as in utility power stations.

Having both DIN-rail and door-mounted options in the same unit, it fits the installation requirements of OEMs and panel builders with small space requirements.









### Marine

Ekip UP easily revamps the electronics of old breakers installed onboard ships, offering a cost-effective solution in respect to traditional approaches.

The unit maximizes the time for maintenance & operation technicians during the installation compared with other retrofitting solution.

The mechanical vibration performances of the unit match the marine application specifications.

Besides, through adaptive protections and digital buses, the unit enables complete coordination of

motors, generators and distribution bus-bars.

### Microgrids

Ekip UP controls urban or remote communities, coordinating the different resources from loads to generators.

Thanks to the all-in-one software functions, Ekip UP maximizes the service continuity of critical power microgrids, like datacenters, hospitals or solar factories.

Leveraging on advanced connectivity capability, system integrators can easily introduce the digital unit is in plant networks.

Package selling upload-model guarantees modularity and flexibility in every microgrid project for design institutes.

### **Product overview**

Ekip UP is CE-marked and cU-Lus listed. It conforms to the Standard IEC 60255 - "Measuring relays and protection equipment" and UL 508, CSA C22.2 No. 14-13 - "Standard for Industrial Control Equipment".

IEC 60255 certification makes Ekip UP suitable globally being recognized by other local regulatory organizations, while cULus compliance enables the access to North America market. Ekip UP Protect+ and Control+ versions are in compliance with grid-connection standard, in particular CEI 0-16 - "Reference technical rules for the connection of active and passive consumers to the HV and MV electrical networks of distribution company". All the Ekip UP range is approved by marine registers (RINA and DNV-GL).

Ekip UP operates in low voltage grids according to the following ranges and characteristics:

| Operating voltage, Ue [V]  | Up to 1150       |
|----------------------------|------------------|
| Operating current, In [A]  | From 100 to 6300 |
| Operating frequency [Hz]   | 50 - 60          |
| Operating temperature [°C] | From -25 to +70* |
| Protection degree          | IP40**           |

<sup>\* +60</sup> according to UL

More technical and standard features are available in the dedicated manual, doc. 1SDH002003A2001.



Ekip UP unit is standard provided in the optimized bag-packaging with:

- ABB current sensors, offered in four types, and cabling kit
- · insertion bridge for voltage sockets
- · power supply cartridge module
- · measurement module
- $\bullet \ \ four \ I/O \ programmable \ contacts.$

Ekip UP is also able to be equipped with optional:

- communication and gateway modules
- · synchrocheck cartridge module
- embedded or external signalling modules
- · software functions
- external differential or homopolar toroids.

If required, commercial voltage sensors can be applied into the specific sockets, clearly identified to ensure correct installation.

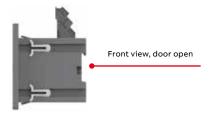
All the details of the accessories are described in Chapter 5 and ordering instructions are listed in Chapter 8.



<sup>\*\*</sup> For IP54 protection, use external cover like Rittal FT 2784.000 or equivalent

0

The same Ekip UP unit may be DIN-rail or doormounted according to the specific requirement. Many clips fix the unit guaranteeing stability in every installation.


Rotating capability of digital contacts and two dedicated labels ensure easy of use in both the mounting options.

Serial Number information is available in the label applied on the unit side as well as in the touch-screen display. Indeed, all the configurations are possible from the display or using the commissioning software Ekip Connect.

Additional labels help to identify the cartridge module plugged into the unit.

### 1. Door mounted, door open





### 2. DIN mounted

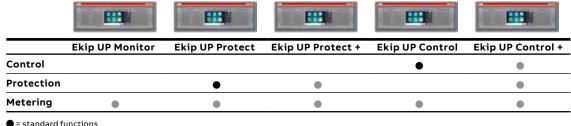


# The ranges

| <b>2/</b> 2  | Ekip UP units                                       |
|--------------|-----------------------------------------------------|
| <b>2/</b> 6  | Technical characteristics for measurement functions |
| <b>2/</b> 8  | Technical characteristics for protection functions  |
| <b>2/</b> 18 | Description of protection functions                 |

# **Ekip UP units**

The innovative Ekip UP digital units are the new benchmark for the measurement, protection and control for low voltage electrical systems.


> The result is a single unit suitable for any demanding application without the need for other external devices.

The ABB plug&play solution improves the plant efficiency, increases awareness of resources and process behaviors, and delivers an easier, more intuitive user experience.

As multifunctional unit, there are five different commercial versions that guarantee flexibility and modularity to meet the needs of all measurement, protection and control applications.

- Ekip UP Monitor
- Ekip UP Protect
- Ekip UP Protect +
- Ekip UP Control
- Ekip UP Control +

All units can also be equipped with optional connectivity and signally modules, in addition to the standard accessories. The main software functions can also be uploaded into Ekip UP Protect, Protect+ and Control+. These versions are ready for external toroids that enable more earth fault protections.



<sup>=</sup> standard functions

2/3

### **METERING**

**Ekip UP Monitor** is more than a measurement unit:

- · Power quality Network Analyzer according to IEC61000-4-30 ed. 2 (up to 50th harmonics)
- · Fault analysis Datalogger based on events withtwo independent memory buffers
- · Maximum, minimum and average value regis-

| Ekip UP Accuracy |              |                  |  |  |  |  |
|------------------|--------------|------------------|--|--|--|--|
| Measure          | Ekip UP unit | → with Sensors * |  |  |  |  |
| Current          | 0.50%        | 1.00%            |  |  |  |  |
| Voltage          | 0.50%        | 0.70%            |  |  |  |  |
| Power            | 1.00%        | 2.00%            |  |  |  |  |

<sup>\*</sup> With Type C current sensors based on installation conditions mentioned in dedicated manual, doc 1SDH002003A1001 and in case of VT (voltage transformer) used cl. 0.2 or below

Advanced communication capabilities are compatible with 8 fieldbus and Ethernet protocol + 1 property bus for easy system integration. Ekip UP has four slots for plug and play modules to

quickly and easily share up to 3000 data with supervision systems, guaranteeing modularity for each application.

Using an optional gateway module, it can be connected to the cloud-platform ABB Ability™ Electrical Distribution Control System thanks to a simple architecture able to connect most of the ABB low and medium voltage devices to the energy management web-app.

This follows the technology focus for big data in the commercial and industrial market segments. Ekip UP Monitor is the hub of the plant providing full connectivity and easy integration into any supervision system making every swtichgear smart.

For more information for power quality metering, please refer to the product note for Network Analyzer - 1SDC210106D0201.





Commercial buildings (shopping malls, offices, hospital, stadium)



Multi-site facilities (police stations, campuses & universities, oil stations)



Industry (food & beverage, water \*waste treatment, textile. manufatcuring)

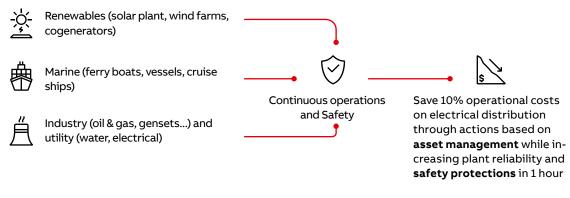


Save 10% operational costs on electrical distribution through actions based on energy management and power quality analysis



## **Ekip UP units**

### **PROTECTION**


**Ekip UP Protect and Protect+** add the protection functions above and beyond monitoring and connectivity ones.

Ekip UP Protect enables protection based on current, voltage, frequency and power as a protective relay for power feeders. Ekip UP Protect+ adds generator protections, adaptive and overcurrent directional ones for power distribution and generation. Using Ekip Protect+ the ability to get digital selectivity with proprietary bus, plus distinguish restricted/unrestricted earth fault is guaranteed. Ekip UP Protect and Ekip UP Protect+ can be equipped with the software kits from the "all-inone" ABB platform, like load shedding innova-

tions, synchrocheck capability, interface certified protections. Those advanced features can ensure service continuity and energy efficiency in the plants, reducing the complexity of different device installation.

Typical application of Ekip UP Protect and Ekip UP Protect+ are:

- Adding protection functionalities to switch-disconnectors, guaranteeing short-circuit breaking capacity as their short time withstand current.
- Leveraging on more ANSI protections and other innovations for installed circuit breaker with simple trip unit, like thermal-magnetic, with the possibility to maintain current short-circuit values.
   Ekip UP is also the perfect solution when trip unit spare parts no longer available or as a backup relay.



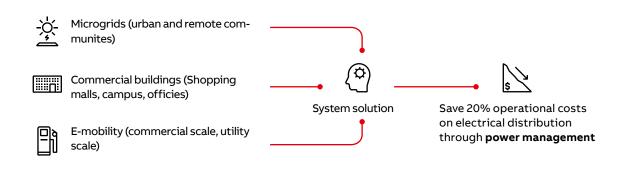


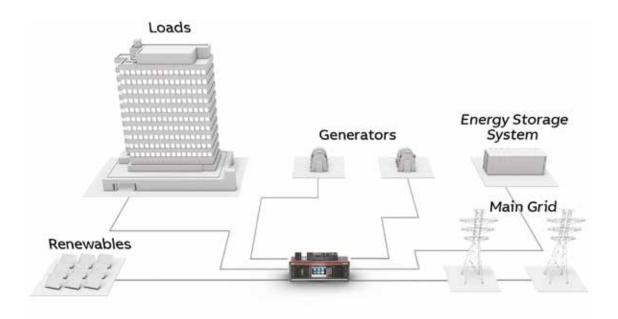
THE RANGES 2/5

### **CONTROL**

Ekip UP Control adds the power management algorithm. This demand management function cuts power bills and makes the plant ready for demand response programs.

Demand response application consists of remote power management: utilities or load aggregators change the power consumption or generation of the plant sites sending specific signals, according to grid service requirments, weather forecasts or pricing strategies.


Using embedded protocols, Ekip UP is able to control remotely power loads based on fixed thresholds.


Besides, Ekip UP Control enables electricity bill reduction thanks to peak shaving and load shifting strategies.

This capability is also supervised in ABB Ability™ Electrical Distribution Control System, so that it can be managed directly for the webapp everywhere directly from tablet or smartphone.

Ekip UP Control+ is the top version of the Ekip UP family. It completes the Ekip Protect+ with control features, making it really a Microgrid controller. Ekip UP Control+ is ready for "all-in-one" software functions so to achieve every target in power distribution and automation.

Ekip UP Control and Ekip UP Control+ answer the requests of energy efficiency, understanding power and acting to enhance plant productivity with optimization logics.





# Technical characteristics for measurement functions

| Instantaneous measurements  | _      | Parameters       | Precision with sensors (1) |
|-----------------------------|--------|------------------|----------------------------|
| Currents (RMS)              | [A]    | L1, L2, L3, Ne   | 1%                         |
| Earth fault current (RMS)   | [A]    | Ig               | 2%                         |
| Phase-phase voltage (RMS)   | [V]    | U12, U23, U31    | 0.7%                       |
| Phase-neutral voltage (RMS) | [V]    | U1, U2, U3       | 0.7%                       |
| Phase sequence              |        |                  |                            |
| Frequency                   | [Hz]   | f                | 0,2%                       |
| Active power                | [kW]   | P1, P2, P3, Ptot | 2%                         |
| Reactive power              | [kVAR] | Q1, Q2, Q3, Qtot | 2%                         |
| Apparent power              | [KVA]  | S1, S2, S3, Stot | 2%                         |
| Power factor                |        | Total            | 2%                         |
| Peak factor                 |        | L1, L2, L3, Ne   |                            |

| Counters recorded from installation or from the last reset |         | Parameters                         | Precision |
|------------------------------------------------------------|---------|------------------------------------|-----------|
| Active energy                                              | [kWh]   | Ep total, Ep positive, Ep negative | 2%        |
| Reactive energy                                            | [kVARh] | Eq total, Ep positive, Ep negative | 2%        |
| Apparent energy                                            | [KVAh]  | Es total                           | 2%        |

| Network Analyzer             |      | Parameters                                                                                                                                                                                                          | Intervals    |
|------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Hourly average voltage value |      | Umin= 0.750.95 x Un Umax= 1.051.25 x Un Events counter (nr. of events day by day in the last year plus the total events in the breaker's lifetime)                                                                  | t = 5120min  |
| Short voltage interruptions  | [no] | Umin= 0.750.95 x Un Events counter (nr. of events day by day in the last year plus the total events in the breaker's lifetime)                                                                                      | t <40ms      |
| Short voltage spikes         | [no] | Umax= 1.051.25 x Un<br>Events counter (nr. of events day<br>by day in the last year plus the<br>total events in the breaker's<br>lifetime)                                                                          | t <40ms      |
| Slow voltage sags and swells | [no] | Umin1= 0.750.95 x Un Umin2= 0.750.95 x Un Umin3= 0.750.95 x Un Umax1= 1.051.25 x Un Umax2= 1.051.25 x Un Events counter (nr. of events day by day in the last year plus the total events in the breaker's lifetime) | t = 0.02s60s |
| Voltage unbalance            |      | U neg. seq.= 0.020.10 x Un<br>Events counter (nr. of events day<br>by day in the last year plus the<br>total events in the breaker's<br>lifetime)                                                                   | t = 5120min  |
| Harmonic analysis            |      | Current and Voltage up to 50°<br>Alarm THD: 520%<br>Single harmonic alarm:<br>310% plus a count of minutes<br>the harmonic has been exceeded                                                                        |              |

<sup>(1)</sup> With Type C current sensors based on installation conditions mentioned in the dedicated manual, doc 1SDH002003A1001 and in case of VT used

THE RANGES 2/7

| Record of values: of the parameter for each interval with time-stamping                                                                                                                                                                                                                                                          |                     | Parameters                                                                                                                                                                                                                                                                                  | Window                                                     | Intervals     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|--|--|
| Current: minimum and maximum                                                                                                                                                                                                                                                                                                     | [A]                 | Min, I Max                                                                                                                                                                                                                                                                                  | Fixed                                                      | Duration:     |  |  |
| Phase-phase voltage: minimum and maximum                                                                                                                                                                                                                                                                                         | [V]                 | U Min, U max                                                                                                                                                                                                                                                                                | synchronizable by remote                                   | Number of     |  |  |
| Reactive power: average and maximum                                                                                                                                                                                                                                                                                              | [kVAR]              | Q Mean, Q Max                                                                                                                                                                                                                                                                               |                                                            | intervals: 24 |  |  |
| Apparent power: average and maximum                                                                                                                                                                                                                                                                                              | [KVA]               | S Mean, S Max                                                                                                                                                                                                                                                                               | _                                                          |               |  |  |
| Data logger: record of high sampling rate parameters                                                                                                                                                                                                                                                                             |                     | Parameters                                                                                                                                                                                                                                                                                  |                                                            |               |  |  |
| Currents                                                                                                                                                                                                                                                                                                                         | [A]                 | L1, L2, L3, Ne, Ig                                                                                                                                                                                                                                                                          | ,                                                          |               |  |  |
| Voltages                                                                                                                                                                                                                                                                                                                         | [V]                 | U12, U23, U31                                                                                                                                                                                                                                                                               |                                                            |               |  |  |
| Active power: average and maximum                                                                                                                                                                                                                                                                                                | [kW]                | P Mean, P Max                                                                                                                                                                                                                                                                               |                                                            |               |  |  |
| Sampling rate                                                                                                                                                                                                                                                                                                                    | [Hz]                | 1200-2400-4800-9600                                                                                                                                                                                                                                                                         | ,                                                          |               |  |  |
| Maximum recording duration                                                                                                                                                                                                                                                                                                       | [s]                 | 16                                                                                                                                                                                                                                                                                          |                                                            |               |  |  |
| Recording stop delay                                                                                                                                                                                                                                                                                                             | [s]                 | 0-10s                                                                                                                                                                                                                                                                                       |                                                            |               |  |  |
| Number of registers                                                                                                                                                                                                                                                                                                              | [no]                | 2 independent                                                                                                                                                                                                                                                                               |                                                            |               |  |  |
| Information on trip and appairs data.                                                                                                                                                                                                                                                                                            |                     | Parameters                                                                                                                                                                                                                                                                                  |                                                            |               |  |  |
| Information on trip and opening data:                                                                                                                                                                                                                                                                                            |                     | eg. L, S, I, G, UV, OV                                                                                                                                                                                                                                                                      |                                                            |               |  |  |
|                                                                                                                                                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                             |                                                            |               |  |  |
| Type of protection tripped 1)  Fault values per phase 1)  [A / V/                                                                                                                                                                                                                                                                | /Hz w/\/ΔR1         |                                                                                                                                                                                                                                                                                             | tion                                                       |               |  |  |
|                                                                                                                                                                                                                                                                                                                                  | /Hz w/VAR]          | eg. I1, I2, I3, neutral for S protect<br>V12, V23, V32 for UV protection                                                                                                                                                                                                                    | tion                                                       |               |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                            | /Hz w/VAR]          | eg. I1, I2, I3, neutral for S protect                                                                                                                                                                                                                                                       |                                                            |               |  |  |
| Fault values per phase 1) [A/V/                                                                                                                                                                                                                                                                                                  | /Hz w/VAR]          | eg. I1, I2, I3, neutral for S protect<br>V12, V23, V32 for UV protection                                                                                                                                                                                                                    |                                                            |               |  |  |
| Fault values per phase <sup>1)</sup> [A/V, Time-stamping                                                                                                                                                                                                                                                                         | /Hz w/VAR]          | eg. l1, l2, l3, neutral for S protect<br>V12, V23, V32 for UV protection<br>Date, time and progressive num                                                                                                                                                                                  | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V, Time-stamping  Maintenance indicators                                                                                                                                                                                                                                                            | /Hz w/VAR]          | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters                                                                                                                                                                            | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1)                                                                                                                                                                                                                            |                     | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a                                                                                                                                         | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V, Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events                                                                                                                                                                                             |                     | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping                                                                                                            | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators  Information on last 30 trips 1) Information on last 200 events  Number of mechanical operations  Total number of trips 1)                                                                                                                                 | [no]                | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping                                                                                                            | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events Number of mechanical operations                                                                                                                                                             | [no]                | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping                                                                                                            | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events Number of mechanical operations Total number of trips 1) Total operating time                                                                                                               | [no]<br>[no]<br>[h] | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping Can be associated to alarm                                                                                 | ber                                                        |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events Number of mechanical operations Total number of trips 1) Total operating time Date of maintenance operations performed                                                                      | [no]<br>[no]<br>[h] | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping Can be associated to alarm                                                                                 | ber<br>and time-stamping                                   |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events Number of mechanical operations Total number of trips 1) Total operating time Date of maintenance operation performed Indication of maintenance operation needed                            | [no]<br>[no]<br>[h] | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping Can be associated to alarm  Last                                                                           | ber<br>and time-stamping                                   |               |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators  Information on last 30 trips 1) Information on last 200 events  Number of mechanical operations  Total number of trips 1)  Total operating time  Date of maintenance operation performed Indication of maintenance operation needed Unit I.D.             | [no]<br>[no]<br>[h] | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping Can be associated to alarm  Last  Type of unit, assigned device na                                         | ber<br>and time-stamping                                   | of switching  |  |  |
| Fault values per phase 1) [A/V/ Time-stamping  Maintenance indicators Information on last 30 trips 1) Information on last 200 events Number of mechanical operations Total number of trips 1) Total operating time Date of maintenance operations performed Indication of maintenance operation needed Unit I.D.  Self-diagnosis | [no]<br>[no]<br>[h] | eg. I1, I2, I3, neutral for S protect V12, V23, V32 for UV protection Date, time and progressive num  Parameters Type of protection, fault values a Type of event, time-stamping Can be associated to alarm  Last  Type of unit, assigned device na  Parameters Alarm due to disconnection: | ber and time-stamping ame, serial number  Note: Opening of | of switching  |  |  |

# Technical characteristics for protection functions

| ABB<br>Code | ANSI<br>Code | Function                                         | Threshold                           | Threshold step | Tripping time                                                                                                                                                                                                |
|-------------|--------------|--------------------------------------------------|-------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L           | 49           | Overload Protection                              | I1 = 0.41 x In                      | 0.001 x In     | with I = 3 I1, t1 = 3144 s                                                                                                                                                                                   |
|             |              | Thermal Memory                                   |                                     |                |                                                                                                                                                                                                              |
|             |              | Tolerance                                        | Trip between<br>1.05 and 1.2 x I1   |                | ± 10%   ≤ 6 x ln<br>± 20%   > 6 x ln                                                                                                                                                                         |
|             | 49           | Overload Protection                              | I1 = 0.41 x In                      | 0.001 x In     | with I = 3 I1, t1 = 3144 s<br>Standard inverse SI: $k=0.14 \cdot \alpha=0.02$<br>Very Inverse VI: $k=13.5 \cdot \alpha=1$<br>Extremely Inverse EI: $k=80 \cdot \alpha=2$<br>$t=k/14$ : $k=80 \cdot \alpha=4$ |
|             |              | Tolerance                                        | Trip between<br>1.05 e 1.2 x I1     |                | ± 10% l ≤ 6 x ln<br>± 20% l > 6 x ln                                                                                                                                                                         |
| S           | 50TD         | Time-delayed overcurrent protection              | I2 = 0.610 x In                     | 0.1 x ln       | with I > I2, t2 = 0.050.8s                                                                                                                                                                                   |
|             | 68           | Zone selectivity                                 |                                     |                | t2sel = 0.040.2s                                                                                                                                                                                             |
|             |              | Start up                                         | Activation: 0.610 x In              | 0.1 x In       | Range: 0.130s                                                                                                                                                                                                |
|             |              | Tolerance                                        | ± 7% l ≤ 6 x ln<br>± 10% l > 6 x ln |                | The better of the two data:<br>± 10% o ± 40 ms                                                                                                                                                               |
|             | 51           | Time-delayed overcurrent protection              | I2 = 0.610 x In                     | 0.1 x ln       | with I = 10 In, t2 = 0.050.8s                                                                                                                                                                                |
|             |              | Thermal Memory                                   |                                     |                |                                                                                                                                                                                                              |
|             |              | Tolerance                                        | ± 7%   ≤ 6 x  n<br>± 10%   > 6 x  n |                | ± 15%   ≤ 6 x ln<br>± 20%   > 6 x ln                                                                                                                                                                         |
| Ī           | 50           | Istantaneous overcurrent protection              | I3= 1.515 x In                      | 0.1 x ln       | with I> 13 Instantaneous                                                                                                                                                                                     |
|             |              | Start up                                         | Activation: 1.515 x In              | 0.1 x In       | Range: 0.130s                                                                                                                                                                                                |
|             |              | Tolerance                                        | ± 10%                               |                | ≤ 30 ms                                                                                                                                                                                                      |
| G           | 50N TD       | Earth fault protection                           | I4 = 0.11 x In                      | 0.001 x In     | with I > I4<br>t4 = Istantaneous (with vaux) + 0.11s                                                                                                                                                         |
|             | 68           | Zone selectivity                                 |                                     |                | t4sel = 0.040.2s                                                                                                                                                                                             |
|             |              | Start up                                         | Activation: 0.21 x In               | 0.02 x In      | range: 0.130s                                                                                                                                                                                                |
|             |              | Tolerance                                        | ± 7%                                |                | The better of the two data:<br>± 10% o ± 40 ms<br>or 50 ms with t4=Istantaneous                                                                                                                              |
|             | 51N          | Earth fault protection                           | I4 = 0.11 x In                      | 0.001 x ln     | with I = 4 In, t4 = 0.11s                                                                                                                                                                                    |
|             |              | Tolerance                                        | ± 7%                                |                | ± 15%                                                                                                                                                                                                        |
| IU          | 46           | Current unbalance protection                     | I6= 290% In<br>unbalance            | 1%In           | with unbalance > 16<br>t6 = 0.560s                                                                                                                                                                           |
|             |              | Tolerance                                        | ± 10%                               |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for $t < 5$ s) $/ \pm 100$ ms (for $t \ge 5$ s)                                                                                                     |
| 21          | 50           | Programmable Istantaneous overcurrent protection | I31= 1.515 xIn                      | 0,1 x ln       | with I> I31, Instantaneous                                                                                                                                                                                   |
|             |              | Tolerance                                        | ± 10%                               |                | ≤ 30 ms                                                                                                                                                                                                      |
| MCR         |              | Closing on short-circuit protection              | I3= 1.515 x In                      | 0,1 x ln       | with I> 13 Instantaneous<br>Monitor time Range: 40500ms                                                                                                                                                      |
|             |              | Tolerance                                        | ± 10%                               |                | ≤ 30 ms                                                                                                                                                                                                      |

02

| Time Step | Excludibility | Excludibility<br>trip | Blocks | Pre-allarm          | Trip<br>curve                                            | Monitor | Protect | Protect+ Contro | l Control+ |
|-----------|---------------|-----------------------|--------|---------------------|----------------------------------------------------------|---------|---------|-----------------|------------|
| 1s        | yes           | no                    | no     | 5090% I1<br>step 1% | t = k / I <sup>2</sup>                                   |         | •       | •               | •          |
|           | yes           |                       |        | •                   |                                                          |         | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
| 1s        | yes           | no                    | no     | 5090%  1<br>step 1% | $t = \frac{kxt1}{\left(\frac{lf}{l1}\right)^{\alpha}-1}$ | _       | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
| 0.01s     | yes           | yes                   | yes    | no                  | t = k                                                    |         | •       | •               | •          |
| 0.01s     | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
| 0.01s     | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
| 0.01s     | yes           | yes                   | yes    | no                  | t = k / I <sup>2</sup>                                   |         | •       | •               | •          |
|           | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
| -         | yes           | no                    | yes    | no                  | t = k                                                    |         | •       | •               | •          |
| 0.01s     | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
| 0.05s     | yes           | yes                   | yes    | 5090% I4<br>step 1% | t = k                                                    |         | •       | •               | •          |
| 0.01s     | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
| 0.01s     | yes           |                       |        |                     |                                                          |         | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
| 0.05s     | yes           | yes                   |        | 5090% I4<br>step 1% | t = k / I <sup>2</sup>                                   |         | •       | •               | •          |
| 0.5s      |               |                       |        |                     | t = k                                                    |         | •       | •               | •          |
| 0.55      | yes           | yes                   | no     | no                  | t – K                                                    |         |         |                 |            |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
|           | yes           | no                    | no     |                     | t = k                                                    |         | •       | •               | •          |
| <br>0.01- |               |                       |        |                     | A = 1:                                                   |         |         |                 |            |
| <br>0.01s | yes           | no                    | yes    | no                  | t = k                                                    |         | •       | •               | •          |
|           |               |                       |        |                     |                                                          |         |         |                 |            |
|           |               |                       |        |                     |                                                          |         |         |                 |            |

# Technical characteristics for protection functions

| ABB<br>Code        | ANSI<br>Code     | Function                                                               | Threshold                                                                   | Threshold step         | Tripping time                                                                                                                          |
|--------------------|------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Gext               | 50G TD           | Earth fault protection                                                 | I41 <sup>(1)</sup> = 0.11 x In Toroid                                       | 0.001 x In Toroid      | with I > I41, t41 = 0.11s                                                                                                              |
|                    | 68               | Zone selectivity                                                       |                                                                             |                        | t41sel = 0.040.2s                                                                                                                      |
|                    |                  | Start up                                                               | Activation: 0.11 x In                                                       | 0.02 x In              | range: 0.130s                                                                                                                          |
|                    |                  | Tolerance                                                              | ± 7%                                                                        |                        | The better of the two data: ± 10% o ± 40 ms                                                                                            |
|                    | 51G              | Earth fault protection                                                 | I41 <sup>(1)</sup> = 0.11 x In                                              | 0.001 x In             | with I = 4 In, t41 = 0.11s                                                                                                             |
|                    |                  | Tolerance                                                              | ± 7%                                                                        |                        | ± 15%                                                                                                                                  |
| Rc                 | 64 50N<br>TD 87N | Residual current protection<br>Differential ground fault<br>protection | IΔn= 3 - 5 - 7 - 10 - 20 -<br>30A                                           |                        | with I > $I\Delta n$<br>t $\Delta n = 0.06 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.8s$                                                       |
|                    |                  | Tolerance                                                              | - 20% ÷ 0%                                                                  |                        | 140ms@0.06s (maximum trip time) 950ms@0.80s (maximum trip time)                                                                        |
| LC1/2<br>lw1/2     |                  | Current threshold LC                                                   | LC1=50%100% I1<br>LC2=50%100% I1                                            | 1%<br>1%               |                                                                                                                                        |
|                    |                  | Current threshold Iw                                                   | Iw1= 0.110 In Activation Iw1: Up/Down Iw2= 0.110 In Activation Iw2: Up/Down | 0.01 x ln<br>0.01 x ln |                                                                                                                                        |
|                    |                  | Tolerance                                                              | Activation Iw2: Up/Down ± 10%                                               |                        |                                                                                                                                        |
| UV                 | 27               | Undervoltage Protection                                                | U8= 0.50.98 x Un                                                            | 0.001 x Un             | with U < U8, t8 = 0.05120s                                                                                                             |
|                    |                  | Tolerance                                                              | ± 2%                                                                        | 0.001 X 011            | The better of the two data:<br>$\pm 10\% \text{ o} \pm 40 \text{ ms} \text{ (for t < 5 s)} / \pm 100 \text{ ms} \text{ (for t ≥ 5 s)}$ |
| ov                 | 59               | Overvoltage protection                                                 | U9= 1.021.5 x Un                                                            | 0.001 x Un             | with U > U9 t9 = 0.05120s                                                                                                              |
|                    |                  | Tolerance                                                              | ± 2%                                                                        |                        | The better of the two data:<br>$\pm 10\% \text{ o} \pm 40 \text{ ms}$ (for t < 5 s) $/ \pm 100 \text{ ms}$ (for t $\geq 5$ s)          |
| VU                 | 47               | Voltage unbalance<br>protection                                        | U14= 290% Un<br>unbalance                                                   | 1%Un                   | with unbalance > U14, t14 = 0.560s                                                                                                     |
|                    |                  | Tolerance                                                              | ± 5%                                                                        |                        | The better of the two data: $\pm$ 10 % o $\pm$ 40 ms (for t < 5 s) / $\pm$ 100 ms (for t $\geq$ 5 s)                                   |
| UF                 | 81L              | Underfrequency protection                                              | f12= 0.90.999 x fn                                                          | 0.001 x fn             | with f < f12 t12 = 0.15300s                                                                                                            |
|                    |                  | Tolerance                                                              | ± 1% (with fn ± 2%)                                                         |                        | The better of the two data:<br>$\pm$ 10 % (min = 30ms) o $\pm$ 40 ms (for t < 5 s) $/$ $\pm$ 100<br>ms (for t $\geq$ 5 s)              |
| OF                 | 81H              | Overfrequency protection                                               | f13= 1.0011.1 x fn                                                          | 0.001 x fn             | with f > f13, t18 = 0.15300s                                                                                                           |
|                    |                  | Tolerance                                                              | ± 1% (with fn ± 2%)                                                         |                        | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) $/ \pm 100$ ms (for t $\ge 5$ s)                                 |
| RP                 | 32R              | Reverse active power protection                                        | P11= -10.05 Sn                                                              | 0.001 Sn               | P > P11, t11 = 0.5100s                                                                                                                 |
|                    |                  | Tolerance                                                              | ± 10%                                                                       |                        | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) / $\pm 100$ ms (for t $\geq$ 5 s)                                |
| Cyclical direction | 47               | Cyclical direction of the phases                                       | 1-2-3 o 3-2-1                                                               |                        |                                                                                                                                        |
| Power<br>factor    | 78               | 3phase Power factor                                                    | PF3= 0.50.95                                                                | 0.01                   |                                                                                                                                        |
| <b>S</b> 2         | 50TD             | Time-delayed overcurrent protection                                    | I5 = 0.610 x In                                                             | 0.1 x ln               | with I > I5, t5 = 0.050.8s                                                                                                             |
|                    | 68               | Zone selectivity                                                       |                                                                             |                        | t5sel = 0.040.2s                                                                                                                       |
|                    |                  | Start up                                                               | Activation: 0.610 x In                                                      | 0.1 x ln               | Range: 0.130s                                                                                                                          |
|                    |                  | Tolerance                                                              | ± 7% l ≤ 6 x ln<br>± 10% l > 6 x ln                                         |                        | The better of the two data: $\pm 10\%$ o $\pm 40$ ms                                                                                   |

02

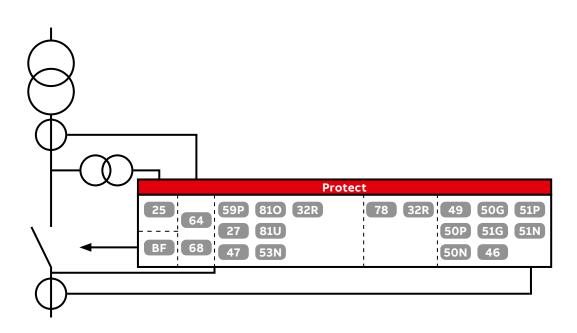
| Time Step | Excludibility                  | Excludibility<br>trip | Blocks | Pre-allarm           | Trip<br>curve          | Monitor Protect | Protect+ Control | Control+ |
|-----------|--------------------------------|-----------------------|--------|----------------------|------------------------|-----------------|------------------|----------|
| 0.05s     | yes                            | yes                   | yes    | 5090% I41<br>step 1% | t = k                  |                 | •                | •        |
| 0.01s     |                                |                       |        |                      |                        |                 |                  |          |
| 0.01s     | yes                            |                       |        |                      |                        |                 | •                | •        |
| 0.05s     | yes                            | yes                   | yes    | 5090% I41<br>step 1% | t = k / I <sup>2</sup> |                 | •                | •        |
|           | Attivabile with rating plug Ro | : no                  |        | no                   | t = k                  | •               | •                | •        |
|           | yes                            | only signalling       | no     | no                   | -                      | •               | •                | •        |
|           | yes                            | only signalling       | no     | no                   | -                      | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
| <br>0.01s | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                | <b>,</b>              | ,      |                      |                        |                 |                  |          |
| 0.01s     | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
| 0.5s      | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
| 0.01s     | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
| 0.01s     | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
| 0.1s      | yes                            | yes                   | yes    | no                   | t = k                  | •               | •                | •        |
|           |                                |                       |        |                      |                        |                 |                  |          |
|           | yes                            | only signalling       | no     | no                   | -                      | •               | •                | •        |
|           | yes                            | only signalling       | no     | no                   | -                      | •               | •                | •        |
| 0.01s     | yes                            | yes                   | yes    | no                   | t = k                  |                 | •                | •        |
| 0.01s     | yes                            |                       |        |                      |                        |                 | •                | •        |
| 0.01s     | yes                            |                       |        |                      |                        |                 | •                | •        |

# Technical characteristics for protection functions

| ABB<br>Code | ANSI<br>Code  | Function                                                | Threshold                                                                        | Threshold step | Tripping time                                                                                                         |
|-------------|---------------|---------------------------------------------------------|----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| D           | 67            | Directional overcurrent protection (Forward & backward) | I7 = 0.610 x In                                                                  | 0.1 x ln       | with I > I7, t7 = 0.10.8s                                                                                             |
|             | 68            | Zone selectivity                                        |                                                                                  |                | t7sel = 0.10.8s                                                                                                       |
|             |               | Start up (Forward & backward)                           | Activation: 0.610 x In                                                           | 0.1 x ln       | range: 0.130s                                                                                                         |
|             |               | Trip direction                                          | Forward or/& backward                                                            |                |                                                                                                                       |
|             |               | Minimun angle direction                                 | 3.6, 7.2, 10.8, 14.5, 18.2, 22, 25.9, 30, 34.2, 38.7, 43.4, 48.6, 54.3, 61, 69.6 |                |                                                                                                                       |
|             |               | Tolerance                                               | (°)<br>± 7%   ≤ 6 x  n<br>± 10%   > 6 x  n                                       |                | The better of the two data:<br>± 10% o ± 40 ms                                                                        |
| UV2         | 27            | Undervoltage Protection                                 | U15 = 0.50.98 x Un                                                               | 0.001 x Un     | with U < U15, t15 = 0.05120s                                                                                          |
|             |               | Tolerance                                               | ± 2%                                                                             |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t $< 5$ s) $/ \pm 100$ ms (for t $\ge 5$ s)              |
| OV2         | 59            | Overvoltage protection                                  | U16 = 1.021.5 x Un                                                               | 0.001 x Un     | with U > U16, t16 = 0.05120s                                                                                          |
|             |               | Tolerance                                               | ± 2%                                                                             |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) $/ \pm 100$ ms (for t $\geq 5$ s)               |
| UF2         | 81L           | Underfrequency protection                               | f17 = 0.90.999 x fn                                                              | 0.001 x fn     | with f < f17, t17 = 0.15300s                                                                                          |
|             |               | Tolerance                                               | ± 1% (with fn ± 2%)                                                              |                | The better of the two data:<br>$\pm$ 10 % (min=30ms) o $\pm$ 40 ms (for t < 5 s) / $\pm$ 100<br>ms (for t $\geq$ 5 s) |
| OF2         | 81H           | Overfrequency protection                                | f18 = 1.0011.1 x fn                                                              | 0.001 x fn     | with f > f18, t18 = 0.15300s                                                                                          |
|             |               | Tolerance                                               | ± 1% (with fn ± 2%)                                                              |                | The better of the two data:<br>$\pm$ 10 % o $\pm$ 40 ms (for t < 5 s) / $\pm$ 100 ms (for t $\geq$ 5 s)               |
| S(V)        | 51V           | Voltage controlled overcurrent protection               | I20 = 0.610 x In                                                                 | 0.1 x ln       | with I > I20, t20 = 0.0530s                                                                                           |
|             |               | Step Mode                                               | Ul= 0.21 x Un                                                                    | 0.01 x Un      |                                                                                                                       |
|             |               |                                                         | Ks= 0.11                                                                         | 0.01           |                                                                                                                       |
|             |               | Linear Mode                                             | Ul= 0.21 x Un                                                                    | 0.01 x Un      |                                                                                                                       |
|             |               |                                                         | Uh= 0.21 x Un                                                                    | 0.01 x Un      |                                                                                                                       |
|             |               |                                                         | Ks= 0.11                                                                         | 0.01           |                                                                                                                       |
|             |               | Tolerance                                               | ± 10%                                                                            |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) $/ \pm 100$ ms (for t $\ge 5$ s)                |
| RV          | 59N           | Residual overvoltage protection                         | U22 = 0.050.5 x Un                                                               | 0.001 x Un     | with U > U22, t22 = 0.05120s                                                                                          |
|             |               | Tolerance                                               | ± 5%                                                                             |                | The better of the two data:<br>$\pm$ 10 % o $\pm$ 40 ms (for t < 5 s) $/ \pm$ 100 ms (for t $\ge$ 5 s)                |
| OP          | 32 <b>O</b> F | Active overpower protection                             |                                                                                  | 0.001 Sn       | P > P26, t26 = 0.5100s                                                                                                |
|             |               | Tolerance                                               | ± 10%                                                                            |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) $/ \pm 100$ ms (for t $\ge 5$ s)                |
| OQ          | 320F          | Reactive overpower protection                           | Q27 = 0.42 Sn                                                                    | 0.001 Sn       | Q > Q27, t27 = 0.5100s                                                                                                |
|             |               | Tolerance                                               | ± 10%                                                                            |                | The better of the two data:<br>$\pm$ 10 % o $\pm$ 40 ms (for t < 5 s) / $\pm$ 100 ms (for t $\geq$ 5 s)               |
| UP          | 32LF          | Active underpower protection                            | P23 = 0.11 x Sn                                                                  | 0.001 x Sn     | with P < P23<br>t23 = 0.5100s                                                                                         |
|             |               | Start up                                                |                                                                                  |                | range: 0.130s                                                                                                         |
|             |               | Tolerance                                               | ± 10%                                                                            |                | The better of the two data:<br>$\pm 10\%$ o $\pm 40$ ms (for t < 5 s) $/ \pm 100$ ms (for t $\geq 5$ s)               |

| Time Step | Excludibility | Excludibility<br>trip | Blocks | Pre-allarm | Trip<br>curve | Monitor Protect | Protect+ Control | Control+ |
|-----------|---------------|-----------------------|--------|------------|---------------|-----------------|------------------|----------|
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
| 0.01s     | yes           |                       | yes    |            |               |                 | •                | •        |
| 0.01s     | yes           |                       | yes    |            |               |                 | •                | •        |
|           |               |                       |        |            |               |                 | •                | •        |
|           |               |                       |        |            |               |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
|           |               |                       |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 | •                | •        |
|           |               |                       |        |            |               |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
|           |               |                       |        |            | ,             |                 |                  |          |
| 0.01s     | yes           | yes                   | VAS    | no         | t = k         |                 | •                | •        |
|           | yes           | yes                   | yes    | 110        | - K           |                 |                  |          |
|           |               |                       |        |            |               |                 |                  |          |
| 0.5s      | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.5s      | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
|           |               |                       |        |            |               |                 |                  |          |
| 0.5s      | yes           | yes                   | yes    | no         | t = k         |                 | •                | •        |
| 0.01s     | yes           |                       |        |            |               |                 |                  |          |
| <br>      |               |                       |        |            |               |                 |                  |          |
|           |               |                       |        | <u> </u>   |               |                 |                  |          |

# Technical characteristics for protection functions


| ABB<br>Code          | ANSI<br>Code | Function                                                      | Threshold                                                      | Threshold step                                                                                                                         | Tripping time                                                                                                                            |
|----------------------|--------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| RQ                   | 40/32R       | Loss of field or reverse                                      | Q24 = -10.1 Sn                                                 | 0.001 Sn                                                                                                                               | Q > Q24, t24 = 0.5100s                                                                                                                   |
|                      |              | reactive power protection                                     | Kq = -22                                                       | 0.01                                                                                                                                   |                                                                                                                                          |
|                      |              | Loss of field or reverse                                      | Q25 = -10.1 Sn                                                 | 0.001 Sn                                                                                                                               | Q > Q25                                                                                                                                  |
|                      |              | reactive power protection                                     | Kq2 = -22                                                      | 0.01                                                                                                                                   |                                                                                                                                          |
|                      |              | Voltage minimum threshold                                     | Vmin = 0.51.2                                                  | 0.01                                                                                                                                   |                                                                                                                                          |
|                      |              | Tolerance                                                     | ± 10%                                                          |                                                                                                                                        | The better of the two data:<br>$\pm 10\% \text{ o} \pm 40 \text{ ms (for t} < 5 \text{ s)} / \pm 100 \text{ ms (for t} \ge 5 \text{ s)}$ |
|                      |              | Secondary voltage                                             | 100120                                                         | 100. 110. 115. 120                                                                                                                     |                                                                                                                                          |
|                      |              | Tolerance                                                     | ± 10%                                                          |                                                                                                                                        |                                                                                                                                          |
| S2(V)                | 51V          | Voltage controlled overcurrent protection                     | I21 = 0.610 x In                                               | 0.1 x ln                                                                                                                               | with I > I21<br>t21 = 0.0530s                                                                                                            |
|                      |              | Step Mode                                                     | UI2 = 0.21 x Un                                                | 0.01 x Un                                                                                                                              |                                                                                                                                          |
|                      |              |                                                               | Ks2 = 0.11                                                     | 0.01                                                                                                                                   |                                                                                                                                          |
|                      |              | Linear Mode                                                   | UI2 = 0.21 x Un                                                | 0.01 x Un                                                                                                                              |                                                                                                                                          |
|                      |              |                                                               | Uh2 = 0.21 x Un                                                | 0.01 x Un                                                                                                                              |                                                                                                                                          |
|                      |              |                                                               | Ks2 = 0.11                                                     | 0.01                                                                                                                                   |                                                                                                                                          |
|                      |              | Tolerance                                                     | ± 10%                                                          |                                                                                                                                        | The better of the two data:<br>$\pm 10\% \text{ o} \pm 40 \text{ ms (for t} < 5 \text{ s)} / \pm 100 \text{ ms (for t} \ge 5 \text{ s)}$ |
| ROCOF                | 81R          | Rate of change of frequency protection                        | f28 = 0.410 Hz/s                                               | 0.2 Hz/s                                                                                                                               | with f > f28, t28 = 0.510s                                                                                                               |
|                      |              | Trip direction                                                | Up or down<br>up&down                                          |                                                                                                                                        |                                                                                                                                          |
|                      |              | Tolerance                                                     | ± 5%                                                           |                                                                                                                                        | The better of the two data:<br>± 20% o ± 200 ms                                                                                          |
| Synchro-<br>check SC | 25           | Synchrocheck (Live busbars)                                   | ΔU = 0.020.12 Un                                               | 0.001 Un<br>0.001 Un                                                                                                                   | Stability voltage time for live state = 10030000s                                                                                        |
|                      |              |                                                               | $\Delta f = 0.11Hz$<br>$\Delta \phi = 550^{\circ} \text{ elt}$ | 0.1Hz<br>5° elt                                                                                                                        | minimum matching Time= 1003000s                                                                                                          |
|                      |              | Tolerance                                                     | ± 10%                                                          |                                                                                                                                        |                                                                                                                                          |
|                      |              | Synchrocheck (Live,Dead busbars)                              | Ulive = 0.51.1 Un<br>Udead=0.020.2 Un                          | 0.001 Un<br>0.001 Un                                                                                                                   | tref= 0.130s                                                                                                                             |
|                      |              | Frequency check off                                           |                                                                |                                                                                                                                        |                                                                                                                                          |
|                      |              | Fase check off                                                |                                                                |                                                                                                                                        |                                                                                                                                          |
|                      |              | Dead bar configuration                                        | Reversed/standard                                              |                                                                                                                                        |                                                                                                                                          |
|                      |              | Primary voltage                                               | 1001150                                                        | 100. 115. 120. 190.<br>208. 220. 230. 240.<br>277. 347. 380. 400.<br>415.440. 480. 500.<br>550. 600. 660. 690.<br>910. 950. 1000. 1150 |                                                                                                                                          |
|                      |              | Secondary voltage                                             | 100120                                                         | 100. 110. 115. 120                                                                                                                     |                                                                                                                                          |
|                      |              | Tolerance                                                     | ± 10%                                                          |                                                                                                                                        |                                                                                                                                          |
| Lock out<br>relay    | 86           | With external dedicated auxil<br>like Arteche type BJ-8-125VD |                                                                |                                                                                                                                        |                                                                                                                                          |

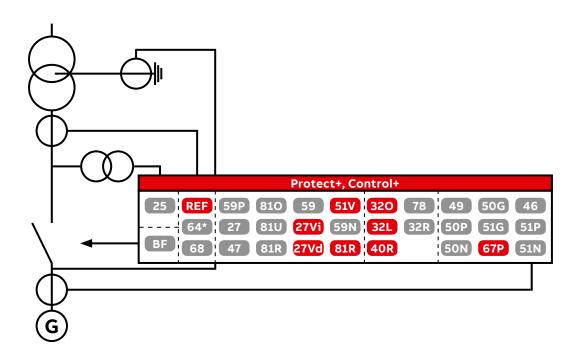
02

| Time Step | Excludibility | Excludibility trip | Blocks | Pre-allarm | Trip<br>curve | Monitor Protect | Protect+ Control | Control+ |
|-----------|---------------|--------------------|--------|------------|---------------|-----------------|------------------|----------|
| 0.1s      | yes           | yes                | yes    | no         | t = k         |                 | •                | •        |
|           | '             |                    |        |            |               |                 |                  |          |
| 0.5s      | yes           | yes                |        | no         | t = k         |                 | •                | •        |
|           |               |                    |        |            |               |                 |                  |          |
|           | yes           |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            | -             |                 |                  |          |
| 0.01s     | yes           | yes                | yes    | no         | t = k         |                 | •                | •        |
| 0.010     | , 55          | ,                  | ,      |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 | •                | •        |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 | •                | •        |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
| 0.01s     | yes           | yes                | yes    | no         | t = k         |                 | •                | •        |
| 0.013     | yes           | yes                | , 03   | 110        | · · ·         |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 | _                |          |
|           |               |                    |        |            |               |                 |                  |          |
| 1s        | yes           | only signalling    | no     | no         | -             |                 | 00               |          |
|           | •             | , , ,              |        |            |               |                 |                  |          |
| 10        |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
| 0.1s      | yes           | only signalling    |        | no         |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           | yes           |                    |        |            |               |                 |                  |          |
|           | yes           |                    |        |            |               |                 |                  |          |
|           | yes           |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |
|           |               |                    |        |            |               |                 |                  |          |

# Technical characteristics for protection functions

### Feeder




### **Protection list from ANSI words**

voltage unbalance

47:

breaker failure 59N: residual voltage 49: thermal model 810: over frequancy 50P/N: phase/neutral instantaneous over-current 81U: under frequency ground instantaneous over-current 78: power factor 51G: ground over-current 32R: reverse power 46: current unbalance 68: zone selectivity 64: residual current 25: synchrocheck 59: over voltage 27: under voltage

### Generator



### Protection list in addition to Ekip UP Protect

67P: directional over-current 87REF: restricted earth fault

27Vi: negative sequence under voltage 27Vd: positive sequence under voltage

51V: volts per hertz

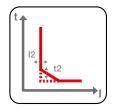
rocof (rate of change of frequency) 81R:

320: over reactive/active power 32L: under active power

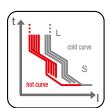

40R: reverse reactive power

### Dual settings

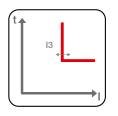
\* 87REF or 64


## **Description of protection functions**

Ekip UP offers current, voltage and power based protection functions. These functions can be set with a few simple steps directly from the wide touchscreen display or using Ekip Connect commissioning software. All the protections can be excluded if necessary. Information on trip and opening data as well as maintenance indicators are available through the Ekip UP memory.



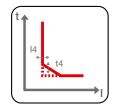

Overload (L - ANSI 49): available with three different types of trip curve:


- 1.  $t = k/l^2$  with inverse long time;
- 2. IDMT in accordance with the Standard IEC 60255-151 for coordination with medium voltage protection, which are available according to the Standard Inverse (SI), Very Inverse (VI) and Extremely Inverse (EI) curves;
- 3. with  $t = k/l^4$  curve for better coordination with upstream switching devices or with fuses. The thresholds can be fine tuned. There are adjustable pre-alarm indicators to provide notification prior a protection reaching the threshold and tripping the unit. All timing settings can also be adjusted, directly from the display.

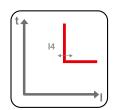


**Time-delayed overcurrent (S - ANSI 51 & 50TD)**: with constant tripping time (t = k), or with constant specific let-through energy (t =  $k/l_2$ ), this provides 15 current thresholds and 8 curves, for fine adjustment.

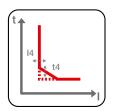



**Thermal memory**: for protections L and S it is used to protect the components, such as transformers, against overheating following overloads. The protection adjusts the trip time of the protection according to how much time has elapsed after the first overload, taking account of the overheating caused.




**Instantaneous overcurrent (I - ANSI 50)**: with trip curve without intentional delay, it offers 15 tripping thresholds.

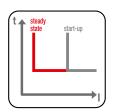
**Closing on short-circuit (MCR)**: the protection uses the same algorithm as the protection I, limiting operation to a settable time window from the closing of the switching device. The protection can be disabled, also alternatively to protection I.


The function is active with an auxiliary supply.



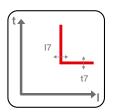
**Earth fault (G - ANSI 51N & 50NTD)**: with trip time independent of the current (t = k) or with constant specific let-through energy ( $t = k/l^2$ ). A pre-alarm indication is also available when 90% of the threshold is reached to activate corrective measures before the protection is tripped. The function also enables the trip to be excluded so that only the alarm is indicated, for use in installations where continuity of service is an essential requirement.



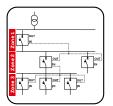

Instantaneous Earth Fault (G-ANSI 50N): with trip curve without instantaneous delay.



**Earth fault on toroid (G ext - ANSI 51G & 50GTD)**: with trip time independent of the current (t = k) or with constant specific let-through energy (t =  $k/l^2$ ). Pre-alarm that 90% threshold has been reached permits the fault to be reported to supervision systems without interruption of continuity. The protection uses the external toroid installed, for example, on the star center of the transformer, and is an alternative to the G and Rc functions. The function is active with an auxiliary supply.




**Neutral protection**: available at 50%, 100%, 150% or 200% of the phase currents, or disabled, it is applied to the overcurrent protections L, S and I.




**Start-up function**: enables protections S, I and G to operate with higher trip thresholds during the starting phase, avoiding untimely trips due to high inrush currents of certain loads (motors, transformers, lamps). The starting phase lasts 100 ms to 30 s and is recognized automatically by the trip unit:

- at the closing of the switching device with a self-supplied trip unit;
- when the peak value of the maximum current exceeds the set threshold (0.1...10 x In) with an externally supplied trip unit; a new start-up is possible after the current falls below the threshold.



**Current unbalance (IU – ANSI 46)**: with constant trip time (t = k), protects from an unbalance between the currents of the single phases protected by the switching device.

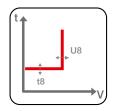


**Zone selectivity for S and G protection (ANSI 68)**: can be used to minimize circuit- breaker trip times closer to the fault. The protection is provided by connecting all the zone selectivity outputs of the trip units belonging to the same zone and taking this signal to the trip unit input that is immediately upstream

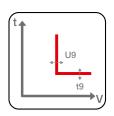
Each switching device that detects a fault reports it to the switching device upstream; the circuit-breaker thus detects the fault but does not receive any communication from those downstream and opens without waiting for the set delay to elapse. It is possible to enable zone selectivity if the fixed-time curve has been selected and the auxiliary supply is present.

**Current thresholds**: this function enables four independent thresholds to be indicated in order to enable corrective action implementation before the overload L protection trips the switching device. For example, by disconnecting loads located downstream of the switching device that are controlled by Ekip Signalling.

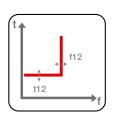
## **Description of protection functions**


### **Protection functions with Ekip Measuring**

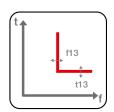
Ekip UP protection functions can be further increased thanks to the embedded Ekip Measuring module. With this module, all the protection functions linked to voltage, frequency and power can be enabled, thus making Ekip UP a complete protection unit that can measure, control and protect even the most complex installation.


A different operating mode can be chosen for each protection function:

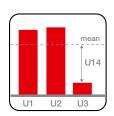
- 1. Active: protection enabled by opening of the circuit- breaker when the threshold is reached;
- 2. Only alarm: protection active, with only alarm indication when the threshold is reached;
- 3. Deactivated: protection disabled.


Furthermore, when the voltage and frequency protections are activated, they indicate an alarm status even when the switching device is open so that a fault can be identified before the switching device closes.




**Undervoltage (UV - ANSI 27)**: with constant trip time (t = k), function is tripped when phase voltage falls below set threshold.




**Overvoltage (OV - ANSI 59)**: with constant trip time (t = k), function is tripped when phase voltage exceeds the set threshold.



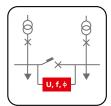
**Underfrequency (UF - ANSI 81L)**: with constant trip time (t = k), function is tripped when network frequency falls below set threshold.




**Overfrequency (OF - ANSI 81H)**: with constant trip time (t = k), function is tripped when network frequency exceeds the set threshold.



**Voltage unbalance (VU – ANSI 47)**: with constant trip time (t = k), protects against an unbalance between the voltages of the individual phases that are protected by the circuit- breaker.



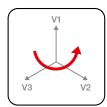

**Residual current (Rc – ANSI 64 & 50NDT)**: with constant temperature (t=k) protects against indirect contacts and is integrated into Ekip UP Protect and Ekip UP Protect+ by a dedicated residual current rating plug and external toroid. The protection is an alternative to the functions G and Gext and it is activated by dedicated rating plugs.



**Reverse active power (RP - ANSI 32R)**: with constant trip time (t = k), function is tripped when total active power – in the opposite direction of the current - exceeds the set threshold.

In addition to the protection functions, the following indication and control functions are available to warn the user that a given condition has been reached. The active indications are always shown on the display and are also available by communication on the system bus (with Ekip Com modules) or electrical indication (with Ekip Signalling modules).




**Synchrocheck (SC - ANSI 25)**: the synchronism control function compares the voltages in the modules as well as the frequencies and phases of two switching devices to which the switching device is connected. Ekip UP indicates that conditions have been reached also with display synchronism indicators that enable the two lines to be made parallel.

The function is available with two work modes:

- In systems with both busbars supplied, where synchronism is determined by:
  - 1. voltage of the two half-busbars above the Ulive threshold for the set time
  - 2. difference of the module of the two voltages below the threshold  $\Delta U$
  - 3. difference in the frequency of the two voltages below the threshold  $\Delta f$
  - 4. difference in the phase of the two voltages below the threshold  $\boldsymbol{\Delta}$
- 5. desirable time for synchronism condition tsyn
- 6. switching device open
- In systems with an out-of-service line (dead busbar), where the synchronism condition is determined by the concurrence of the following conditions for the tref set time:
  - 1. voltage of the active half-busbar above threshold Ulive
  - 2. voltage of the dead half-busbar below threshold Udead
  - 3. switching device open

In both cases, synchronism consent is withdrawn when one of the above conditions is missing and it has not been less than 200ms from the change of the circuit- breaker condition (when the relationship has been set).

The indication of reached synchronism is available directly as an electrical indication via a contact that is always supplied with the module. The function can be activated simply by connecting the Ekip Synchrocheck module to any Ekip UP Protect or Protect+.




Cyclical direction of the phases (ANSI 47): indicates an alarm through inversion of the phases sequence.

**Power factor (ANSI 78):** available with a three-phase threshold, warns when the system operates with a power factor that is less than the set power factor.

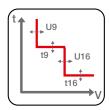
## **Description of protection functions**

The following protections are also available:

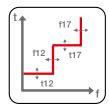
**Second time-delayed overcurrent protection (S2 – ANSI 50TD):** in addition to the standard protection S, a second (excludable ) time-constant protection is available that enables two independent thresholds to be set in order to ensure precise selectivity, especially in highly critical conditions.



Second protection against earth fault (ANSI 50GTD/51G & 64REF): whereas with Ekip UP Protect the user can choose the implementation of the protection G by own current sensors (calculating the vector sum of the currents), Ekip UP Protect+ offers the simultaneous management of both configurations by two independent earth fault protection curves. Owing to this characteristic, the trip unit is able to distinguish a non-restricted earth fault and then activate the opening of low voltage switching device, from a restricted earth fault, and to thus command the opening of the medium voltage switching device.


Another possible configuration is with the residual current protection replacing the Gext protection, whilst the G protection remains active. The residual current protection is activated in the presence of the residual current rating-plug and of the toroid.

**Directional overcurrent (D – ANSI 67)**: the protection is able to recognize the direction of the current during the fault period and thus detect if the fault is upstream or downstream of the circuit-breaker. The protection, with fixed time trip curve (t=k), intervenes with two different time delays (t7bw and t7fw), according to the current direction. In ring distribution systems, this enables the distribution portion to be identified in which the fault occurred and to disconnect it while maintaining the operation of the rest of the installation.

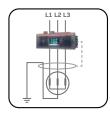



Zone selectivity for protection D (ANSI 68): enables the possibility to interconnect switching devices so that, in the event of a fault, the fault area can be rapidly isolated. Disconnection only occurs at the level close to the fault and operation to the rest of the operation continues uninterrupted. The function is particularly useful in ring and grid installations where, in addition to the zone, it is also essential to define the flow direction of the power that supplies the fault. It is possible to enable directional zone selectivity alternatively to the zone selectivity of the protections S and G, and in the presence of an auxiliary supply.

**Start-up function** for protection D: enables higher trip thresholds to be set at the outgoing point, as available for protections S, I and G.

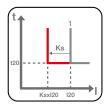


Second protection against undervoltage and overvoltage (UV2 and OV2 – ANSI 27 and 59): enables two minimum and maximum voltage thresholds to be set with different delays in order to be able to discriminate, for example, between voltage dip transients due to the start-up of a motor and an actual fault

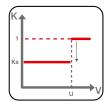



Second protection against underfrequency and overfrequency (UF2 and OF2 - ANSI 81L and 87H):

enables two minimum and maximum frequency thresholds to be set simultaneously. For example, only an alarm can be set to be tripped when the first threshold is reached, and the switching device can be set to be opened when the second threshold is reached.

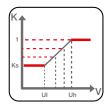

**Dual setting of protections**: Ekip UP Protect+ can store a set of alternative parameters for all protections. This second series (set B) can replace, if necessary, the default series (set A) by an external command. The command can be given when the network configuration is edited, for example when an emergency source is activated in the system, changing the load capacity and the short-circuit levels. Another typical application is protecting the operator opposite the switchgear against the electric arc. In this case, protection delays are minimized to safeguard the operator (Set A), whereas in the absence of an operator the protections are set to ensure selectivity with the switching devices downstream (Set B). It is possible to activate series B by:

- · Digital input available with an Ekip Signalling module;
- · Communication network, by means of one of the Ekip Com communication modules;
- Directly from the Ekip UP display;
- By a settable internal time, after the circuitbreaker has closed.

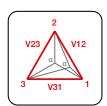



**Differential ground fault (Rc - ANSI 87N)**: protects against internal earth fault on generator winding. It is required that the toroid hugs the active conductors and the ground conductor. Rc protection is integrated by a dedicated residual current rating plug and the external toroid.

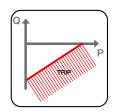
The specific functions for generator protections are described below. For each of these it is possible to choose the operating mode: active, only alarm or deactivated. All the voltage and frequency protections also operate when the circuit- breaker is open, enabling the fault to be identified before the closing of the switching device.



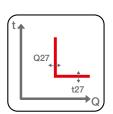

**Voltage controlled overcurrent protection (S(V) - ANSI 51V)**: protection from maximum current with a constant trip time (t = k) that is sensitive to the voltage value. The set current threshold, following a voltage drop, decreases by steps or linearly.



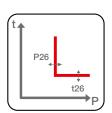

In step mode (controlled mode) the protection is tripped at the set threshold (I20) if the voltage is above U, whereas it is tripped at the lower threshold of the factor Ks (I20  $^{\star}$  Ks) if the voltage is below U.


### **Description of protection functions**

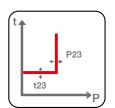



On the other hand, in linear mode (restrained mode) two voltage limits are selected within which the protection is tripped at the set threshold (I20) reduced by the factor K corresponding to the measured voltage. The variation of the factor K is proportional to the voltage, and for voltages greater than the upper threshold (Uh) the threshold I20 works, whereas for voltages below the lower threshold (II) the minimum threshold (I20 \* Ks) applies.




**Residual overvoltage (RV – ANSI 59N)**: with constant trip time (t = k), protects against insulation loss in systems with insulated neutral or with neutral earthed with impedance.

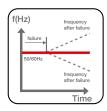



Loss of field or reverse reactive power (RQ – ANSI 40 or 32RQ): with constant trip time (t = k), the switching device tripped when the total reactive power absorbed by the generator exceeds the set threshold. It is possible to select the constant threshold (k=0) or a function of the delivered active power of the generator ( $k\neq 0$ ).

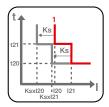


**Reactive overpower (OQ – ANSI 320F):** with constant trip time (t = k), the function is tripped when reactive power exceeds the set threshold in the generator to network direction.

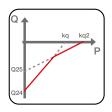



**Active overpower (OP – ANSI 320F)**: with constant trip time (t = k), the function is tripped when the active power exceeds the threshold set in the delivering direction of the generator.




Active underpower (UP – ANSI 32LF): with constant trip time (t = k), the function is tripped when the active power delivered by the generator is lower than the set threshold. It is possible to disable the protection temporarily, to manage the start-up phase, by setting a time window from the closing of the switching device, by using an electrical signal or via incoming communication to a relay.

02


In addition, the following protections are also available:



Rate of change of frequency (ROCOF - ANSI 81R): enables both positive and negative frequency variations to be rapidly detected . The protection is constant and is tripped when the frequency variation in Hz/s is greater than the set threshold.



Second protection against voltage controlled overcurrent protection (S2(V) - ANSI 51V): available in addition to the protection S(V), enables total selectivity to be achieved in all installations.



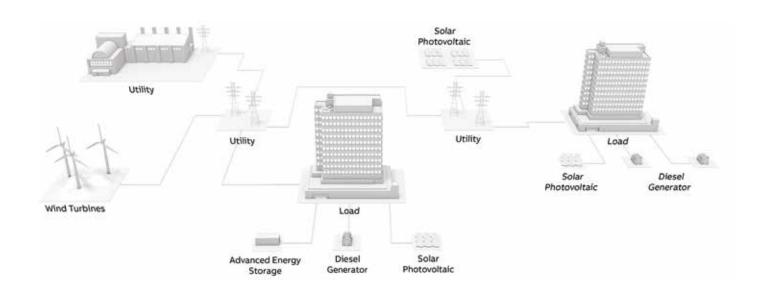
Second protection against loss of field or reverse reactive power (RQ - ANSI 40 or 32R): enables the generator's de-energization curve to be followed very accurately, thereby avoiding any unnecessary disconnection.

For more information on generator protections, please refer to the product note for Ekip G -1SDC210108D0201.



# **Software functions**

| <b>3/</b> 2  | Introduction                |
|--------------|-----------------------------|
| <b>3/</b> 4  | Interface Protection System |
| <b>3/</b> 6  | <b>Adaptive Protections</b> |
| <b>3/</b> 8  | Load Shedding               |
| <b>3/</b> 10 | Synchrocheck                |
| <b>3/</b> 12 | Power Controller            |


### Introduction

Renewables have been growing during the last ten years reducing pollution for a greener environment. Due to environmental changes, people have started thinking about ecology and sustainability, increasing their awareness of energy self-consumption and efficiency.

Ekip UP is the first unit to upgrade low-voltage plants with advanced protection, programmable logic, full connectivity, easy integration and comprehensive energy management in a single revolutionary device.

Installed downstream of the MV/LV transformer, Ekip UP works like a certified Interface Protection System in order to check the Main Grid conditions and disconnect the facility whenever grid voltage and frequency are out of the ranges prescribed by the local Standards.

Ekip UP and its Adaptive Protections recognize the network change and automatically set new thresholds to guarantee protection and coordination in on-grid and off-grid conditions.



In order to maximize the service continuity, local generation starts to supply the islanded plant. Ekip UP integrates programmable status based on measurements, events and protections, so it is possible to create transfer switching logics. It can be also easily integrated with ATS controller in revamping projects.

The Load Shedding embedded algorithm is able to manage the power system for comprehensive microgrid energy management.

Before the transfer from the main grid to local line, selected loads are shed to support power balance. Ekip UP, using slope of frequency, can disconnect loads in case of emergency unbalance condition.

When the main grid comes back stable, thanks to When the main grid is stable again, Synchrocheck logics manages voltage and frequency to allow plant reconnection to the Utility.

In grid-connected operation, Ekip UP manages the **Power Controller** algorithm to shave peaks and shift loads in order to optimize system performance and productivity.

Ekip UP advanced features are easily customized thanks to commissioning software tools which do not require high level engineering competencies. Ready to use templates enable the download of all the logics directly into the unit. The solutions become plug & play, increasing modularization and standardization for design and installation.

#### Software function compatibility table

|                      | Interface Protection Load Shedding | Synchrocheck | Power Controller |
|----------------------|------------------------------------|--------------|------------------|
| Interface Protection | •                                  |              | •                |
| Load Shedding        | •                                  | •            | •                |
| Synchrocheck         | •                                  |              | •                |
| Power Controller     | •                                  | •            |                  |

### **Interface Protection System**

Ekip UP embeds interface protections for active plant or renewable sources connected to medium voltage grid.

#### **Purpose**

The Interface Protection System provides the protections necessary to connect Prosumers (end user with local generation available) to the Utility. The generating units installed in the facility plant will be disconnected from the grid whenever voltage and frequency values of the grid itself are out of the Standards' range. Such a disconnection is usually carried out by means of an Interface Device (air circuit breaker, molded case circuit breaker, switch disconnector or contactor) that trips after receiving an opening command provided by an external Interface Protection System. ABB Ekip UP Protect+ or Control+ is able to perform the functions of Interface Protection System as a unique flexible solution. This advanced feature is possible thanks to the implementation of the several interface protections into the trip unit installed on board Ekip UP. Today Ekip UP is suitable for Standard CEI 0-16, the most important Standard for the connection of Active Users. CEI 0-16 is a reference for a lot of other local standards, in particular in Italy and harmonized for European countries. In many other Countries the IPS function can very useful as well.

#### **Application examples**

ABB has been able to integrate in a single device the following functions to be used in the scenarios described below. Thanks to these embedded functions, the number of devices for feeder or generator protection, energy and asset management to be installed is reduced, with consequent component saving inside the switchboard. Ekip UP with embedded Interface Protection System has been tested and certified in compliance with the Standard CEI 0-16 and are suitable for the following scenarios.

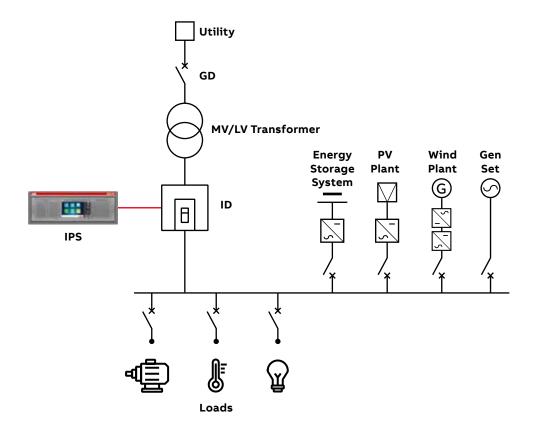
#### Ekip UP as Microgrid Main protection unit

In this scenario, Ekip UP with embedded Interface Protection System can fulfill the function of Interface Protection System (IPS). In case of IPS tripping, microgrid, downstream Ekip UP main unit, remains active thanks to both the local generation and the load shedding feature also embedded in the main unit.

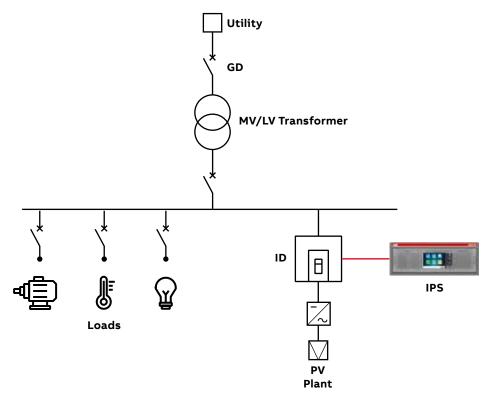
#### Ekip UP as local generation protection unit

In this scenario, there are non-operating loads in islanding condition, so, when there is an Utility outage, Ekip UP detects that voltage and frequency values are out of the range prescribed. According to the standard the local generation must be disconnected from the Utility, so Ekip UP opens, acting as interface device, thanks to the IPS embedded. In this condition loads are not operating as there is no voltage on the secondary of the MV/LV transformer and no local generation connected.

#### **Benefits**


Thanks to Ekip UP with embedded Interface Protection System, the following benefits are guaranteed:

- Ekip UP performs interface protections with every possible switching device, ensuring also reclosing operation when grid is restored. The reclosing logics are granted with air circuit breaker, molded case circuit breakers, switch disconnector or contactor.
- If the Ekip UP is installed on the generator feeder, the unit will be able to perform the double function of Interface Protection System and Generator Protection thanks to the range of protections integrated also in the Ekip UP Protect+ or Control+ unit.
- Ease of use, thanks to Ekip Connect software which allows an immediate and intuitive commissioning phase.
- Power generation remote monitoring with the main energy and power quality parameters available through cloud-based platform.


For more info check out the product note for Interface Protection Systems, 1SDC210103D0201.



Ekip UP as Microgrid Main protection unit



Ekip UP as local generation protection unit



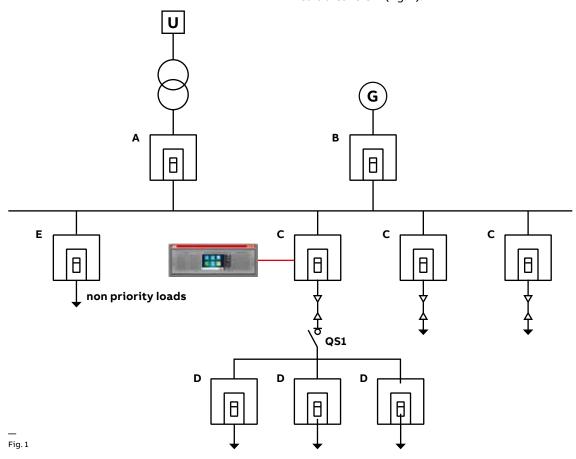
### **Adaptive Protections**

Ekip UP offers dual protection level settings to ensure continuous operation during power transfer.

#### **Purpose**

User's plants can work as a LV Microgrid thanks to the energy produced by renewable and local power sources, in particular as a consequence of lacking of the Utility power supply, e.g. due to a fault on the MV voltage side. In order to still guarantee a high level of selectivity and continuity of service, it is important to take into account the variation of the short circuit power when moving from. Indeed, during grid connected condition the fault current on a Microgrid feeder is supplied by the Utility, so it is higher than the one supplied only by the local generation during islanded condition.

As a result, it is desirable that the different protection thresholds of the units can be automatically changed during the transition to the islanding condition. This is possible with Ekip UP Protect+ and Control+ versions.


#### **Application example**

A typical case is facility connected to the MV Utility by means of a MV/LV transformer. If the Utility shuts down, the plant will become a Microgrid supplied by the local generator G, which will feed the priority loads by using the load shedding feature of Ekip UP.

In grid-connected condition, the generator G is disconnected. With reference to fig.1:

- · Circuit breaker A is closed
- · Circuit breaker B is open
- Circuit breakers C are closed. The protections of the one that supplies loads D are upgraded using "Set A" of Ekip UP unit.
- Circuit breakers D are closed
- · Circuit breaker E is closed
- · Circuit breaker QS1 is closed
- · All loads supplied.

The circuit breakers C are selectively coordinated with the upstream main circuit breaker A, supplied by the Utility, and the downstream load circuit breakers D (fig. 2).

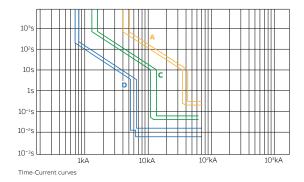


When there is a Utility outage, circuit breaker A opens and B to switch to the local backup power source (islanded condition). In order to ensure coordination, Ekip UP adaptive protections - added on circuit breaker C - offer a second set of protection level settings to ensure selectivity is maintained in the system. The second set of protection levels are optimized for the characteristics of the local generator ensuring the incoming supply and load side switching devices will remain selectively coordinated.

With reference to Figure 1:

- Circuit breaker A is open
- Circuit breaker B is closed
- Circuit breakers C are closed and the protection thresholds move automatically to "Set B"
- Circuit breakers D are closed
- · Circuit breaker E is open
- Circuit breaker QS1 is closed
- No priority loads can be disconnected using another functionality of Ekip UP units (see next paragraph).

The following Figure shows how it is possible to switch to a set of parameters which guarantees selective coordination between switching devices C and B by means of the "Adaptive protections" function embedded in the trip unit of the circuit-breaker C.


#### **Benefits**

Ekip UP Protect+ and Control+ offer two sets of settings in a single device providing:

- Overcurrent protection and selectivity when connected to either the main utility power or a local backup power source
- Service continuity in just a single unit of the switchboard
- Ease of use, thanks to the Ekip Connect software which allows quick and easy commissioning.

As Ekip UP shares the same electronics of Emax 2 circuit breaker, for more info check out the white paper " Emax 2, all in one innovation: Adaptive protections" - 1SDC007116G0201.





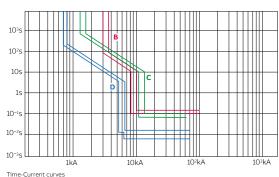



Fig. 2 Fig. 3

### **Load Shedding**

Ekip UP has built-in load shedding algorithms to avoid blackouts due to power unbalance in the low voltage plant and reduce stress on the system's components.

#### **Purpose**

ABB Ekip UP embeds patented functions based on load shedding which reduces Microgrid stress. Typically it is the main protection relay of the low voltage Microgrid located at the interface point with the medium voltage grid, able to control the facility in every circumstances.

#### Microgrid in islanding operation

When a circuit breaker or switching device opens due to Ekip UP interface protection systems or an external command, the transition from on-grid to off-grid should be smooth and bumpless. When it is standalone, the power absorption from the main grid ceases, so that the Microgrid loads remains supplied by the local generation, like a diesel GenSet or energy storage systems. This Microgrid generation can always be active or started up by an automatic transfer switching (ATS) logic after the disconnection from the main grid, depending on the plant configuration. During the islanding transition, it is very important to avoid the frequency drop, otherwise the generation protections could trip jeopardizing the Microgrid stability with consequently a long downtime. Ekip UP, employing current and voltage measurement, integrates two different fast load shedding logics to reduce this blackout risk, protecting the Microgrid during the intentional or unintentional islanding operation:

- Basic Load Shedding is a simple logic able to recognize the Microgrid disconnection event and shed a predefined group of non-priority loads thus ensuring power balance in a fast reaction time.
- Adaptive Load Shedding is the advanced algorithm available with Ekip UP as an enhancement of the basic version which is standard supplied. The intelligent software embedded in the unit sheds very quickly the non-priority loads according to the Microgrid power consumption and frequency levels. Moreover, this software has a dedicated configuration for ATS configuration with backup generation and it is even able to estimate the energy produced by a solar plant based on plant geography settings.
   All the versions are available on Ekip UP Protect, Protect+, Control+ for both the Microgrid situa-

tions, sharing some information about the loads

under control in the plant.

#### **Application examples**

- Facilities with GenSets running along with renewable sources. For example remote PV-diesesl communities connect to weak distribution grids with frequent faults, or plants located in geographical areas with frequent environmental events, such as hurricanes or earthquakes.
- Grid-connected plants with back-up GenSets that require high reliability. For example, hospitals, banks or data centers.

#### **Benefits**

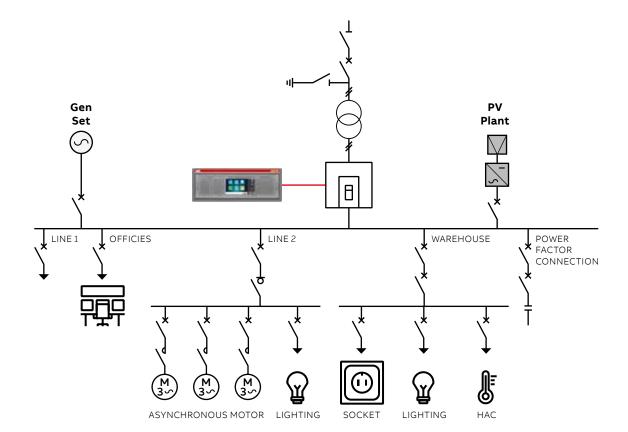
Thanks to Ekip UP with embedded Load Shedding innovation, the following benefits are guaranteed: Service continuity

 When a plant remain disconnected from the main grid, even if local production is present, there is a significant stress that turns off all the generators with consequent blackout. Load Shedding logics embedded in Ekip UP reduce the frequency drop that usually makes the local generation protection trip, so maintaining the plant live.

#### Space saving

- Ekip UP has embedded intelligence for Load Shedding: taking advantage of the current and voltage sockets there is no need for other PLCs.
- In addition, static converters for low voltage photovoltaic production have typically antiislanding protections: this implies another power deficit to be added to the main grid contribution lost during the Microgrid islanding.
   Ekip UP is the first digital unit that estimates solar production without additional sensors.
- Load Shedding is suitable with ATS architectures like Main-BusTie-Gen used to distinguish priority/non-priority loads.
   Where feasible, BusTie switching device is not required anymore and this means:
  - Significant space and material saving up to 50% in the power distribution switchgear for panel builders.

- More flexibility for consultants during plant design. Indeed, Load Shedding dynamically chooses the loads to be shed based on real time power unbalance.
- ATS unit manages only two sources, without interlock, logic programming and wiring connections for the third circuit breaker with less time required for installation.


#### Ease of use

- Load Shedding logic usually requires high level engineering and customization utilizing PLCs.
- Ekip UP guarantees easy installation through templates and a user friendly graphic interface.

For more info check out the product note for Load Shedding - 1SDC210105D0201.



Typical load shedding application



### **Synchrocheck logics**

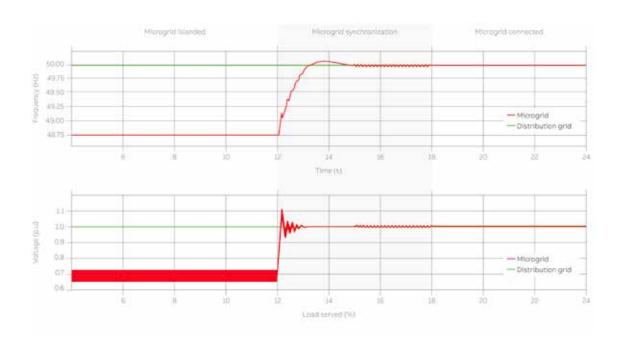
Ekip UP is able to analyze voltage waveforms from different power sources.

#### **Purpose**

Thanks to its advanced electronics, Ekip UP is the first smart unit able to island a Microgrid when faults or power quality events occur and reconnect to the distribution network when the conditions are right.

Synchrocheck logics operates the ANSI 25A, with possible automatic re-closing capabilities based on the synchronism status detection.

Using the Ekip Synchrocheck cartridge module, Ekip UP monitors the voltage amplitude, the frequencies and the phase displacement. Thanks to this information, it is possible to realize simple logics to adapt the Microgrid voltage and frequency to the main grid ones. This basic regulation based on up and down signals sent to the local generator controllers can be realized by Ekip Signalling contacts in order to reach synchronization. The switching device may be automatically reclosed when Ekip UP identifies that the synchronism is achieved using Ekip Synchrocheck and the closing actuator.


As an alternative, Ekip Synchrocheck can send an indication signal of synchronism achieved.

#### **Application examples**

Synchrocheck protection and logics are perfect for the following applications:

- During Microgrid reconnection to the main grid, speeding up paralleling between two systems with different steady states.
- When there is the closed transition of an automatic transfer switch, the main grid should be connected to the same busbar with the backup Microgrid generation in order to guarantee continuos load operation, with or without a bus-tie switching device.
- For single Gen Set paralleling operations.





#### **Benefits**

Ekip UP with embedded Synchrocheck provides:

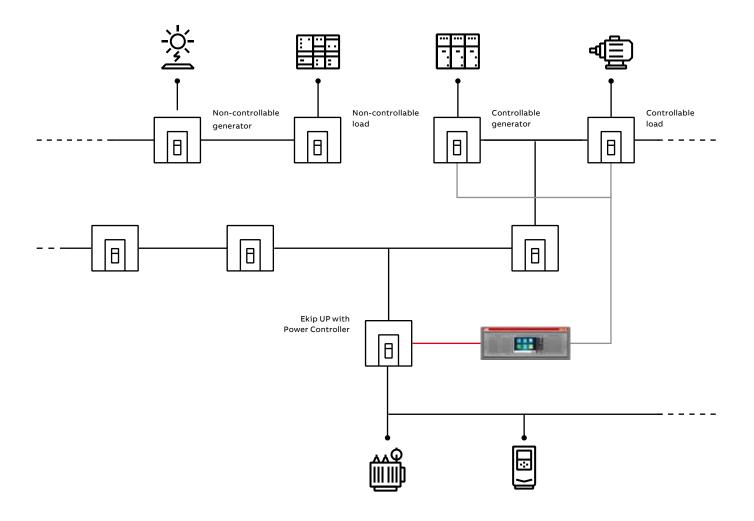
- A single unit, more ANSI functions
  - Components reduction with no external synchrocheck relay and less voltage transformers required if compared with traditional approaches of multiple devices.
  - Increased reliability and time saving during the installation with less cabling and related installation complexity.

### Ease of use

Embedded protections and logics simplified configuration, eliminate the need for programming and engineering skills.

### **Power Controller**

Ekip UP is able to control loads and generator to ensure bill savings and enable demand response applications according to power management strategies.


#### **Purpose**

Thanks to Power Controller software, Ekip UP manages the power to shave the peaks and shift the loads. In this way, it possible to cut electricity bills, increase energy efficiency up to 20% and be ready for demand response programs. Power Controller function is based on a patented calculation algorithm that allows a load list to be controlled through a remote command of relevant switching device (like circuit breaker, switch disconnector, contactor, drive) or control circuit according to a priority defined locally by the user ore remotely by a load aggregator or utility, based on his own requirements and types of load.

The algorithm is based on a forecast average power absorption over a determined time interval, and is set by the user. Whenever this value exceeds the fixed power, the Power Controller function intervenes to bring it back within the limits.

This system can be realized with a single Ekip UP Control or Ekip UP Control+ standard equipped with this function and installed as the low voltage plant controller.

Furthermore, the control unit, has the ability to not only control passive loads, it can also manage a reserve generator.



SOFTWARE FUNCTIONS 3/13

In installations that are already equipped with energy management systems, the load limit can be controlled remotely. OpenADR communication standards (see Chapter 4) provides another way to receive power set-points from load aggregators or utilities.

Loads can be controlled through two ways:

- through the wired solution, by commanding the shunt opening/closing releases or acting on the motor operators of the loads to be managed;
- through a dedicated communication system Ekip Link (see cap. 4).

The ability to control the loads according to a list of priorities already defined provides significant economical and technical advantages:

- economical: controlling energy consumption eliminates penalties due to excess of power absorption in respect of the contractual power set with the Utility. Indeed, in some case the Utility increases automatically the contractual power as a consequence of repeated limit excesses.
   Besides, Power Controller enables demand response applications, thus give the possibility to receive rebates and profits for the services offered.
- technical: controlling power reduces the risk of malfunctioning, ageing of system components, or worse, black outs due to plant overload.
   Combining Power Controller with Load Shedding ensures also the possibility to avoid protection trips, even managing the average power for economical reasons.

The exclusive Power Controller function available on the new Ekip UP units monitors the power, keeping it below the limit set by the user. As a result of this more effective use, the peak of power consumed can be limited, thus reducing electricity bills.

The Power Controller, patented by ABB, disconnects non-priority utilities, such as electric car charging stations, lighting or refrigeration units, during the times when consumption limits need to be respected, and connects them again as soon as it is appropriate. When required, it automatically activates auxiliary power supplies such as generator sets. No other supervision and control system is required: it is sufficient to set the required load limit on Ekip UP, which can control any switching device located downstream, even if it is not equipped with a measurement function.

#### **Application examples**

Electricity bill savings, demand response, avoiding power overload are the typical scenarios where Power Controller is adopted.

As it operates on non-critical loads, it is common in office building, shopping malls, hotels, campuses, waste and water industries or every plant that works like a low voltage Microgrid.

### **Power Controller**

#### **Benefits**

Thanks to Ekip UP with embedded Power Controller, the following benefits are guaranteed:

- Reduction of energy costs with minimum impact.
- The loads are disconnected from the power supply as few times as possible, enabling power consumption peaks to be limited. This allows renegotiation of electrical contracts for power allocated to reduce total energy costs.
- Power limited only when necessary.
   Power Controller function manages up to four different time bands, it is therefore possible to respect a particular power limit according to whether it is during the day (peak) or night (off peak). In this way, consumption during the day when rates are at their highest can be limited.
- Power Controller function allows the installation to be managed efficiently with a simple architecture. Thanks to a patented design, it can measure the total power of the installation without needing to measure the power consumed by each load. Installation costs and times are thereby reduced to a minimum.
- Power Controller function does not require the writing, implementing and testing of complicated programs like in PLC cases: the logic is built in the protection unit and ready to use.
   Parameters can be set simply from a smart phone or directly from the Ekip UP display.
- From the electrical system point of view, significantly helps to flatten the load curve, limiting
  the use of peaking power plants in favour of
  base load power plants with greater efficiency.

- · Thanks to integrated communication modules, Power Controller can receive the maximum absorbable power directly from the Utility control system, determining consumption for the next 15 minutes. Power Controller, according to the information received, manages the switching off of non-priority loads and the switching on of reserve generators. The software gives maximum priority to preferred energy sources, such as wind and solar, and they are therefore considered uninterruptable. In the event the production of internal power to the controlled network is reduced, due, for example, to decreased production of solar power, Power Controller will disconnect the necessary loads to respect the limit set.
- This benefit is used, for example, in installations with a system of cogeneration. Power Controller controls the total consumption drawn from the electrical network, interrupting non-critical loads when production is reduced and reconnecting them when generator power is sufficient. This offers multiple advantages: reduction in energy costs, maximum use of local production and greater overall energy efficiency.

For further information, please refer to the product note for Power Controller - 1SDC210110D0201.



# **Commissioning and connectivity**

| <b>4/</b> 2  | Introduction                               |
|--------------|--------------------------------------------|
| <b>4/</b> 3  | <b>Commissioning Software Ekip Connect</b> |
| <b>4/</b> 6  | Connectivity and Supervision on the field  |
| <b>4/</b> 8  | Connectivity and Supervision to the cloud  |
| <b>4/</b> 10 | Predictive Maintenance                     |

### Introduction

Ekip UP digital units are flexible and easy to configure to meet the supervision and control levels of each applications.

Ekip UP simplifies the business thanks to plant upgrade without new design or replacements. In addition, its commissioning is really easy leveraging free commissioning tools.

Ekip Connect simplifies the user experience. Everyone can visualize energy and power quality measured by Ekip UP, set protections thresholds, configure communication and signalling modules.

Even the setup of advanced software functions, like interface protection functions or load shedding logics, becomes intuitive like using an app on a laptop.

The supervision of the power grid is enabled by advanced connectivity built-in Ekip UP, with more than 3000 data points available.

The low voltage plant, like Microgrid, can be monitored from the field by the integration with Scada systems leveraging on embedded up to 8 fieldbus or from the cloud, based on Internet technology.

Ekip UP is able to connect low voltage switchgear to the energy management system based on Microsoft Azure cloud called ABB Ability™ Electrical Distribution Control System.

Thanks to this, Ekip UP is the single unit that digitalizes every gear, even existing ones.



### **Commissioning Software**

### **Ekip Connect**

Ekip Connect is a free tool which optimizes Ekip UP's ability to manage power, acquire and analyze electrical values, and test protection, maintenance and diagnostic functions.

#### Overview of the software

An overview of the software available and their main characteristics are given below:

| Software     | Functions                      | Distinctive characteristics                      |
|--------------|--------------------------------|--------------------------------------------------|
| Ekip Connect | - commissioning                | - simple and intuitive use                       |
|              | - analysis of faults           | - integrated with DOC electrical design software |
|              | - testing of communication bus | - useable via EtherNet™                          |
|              | - testing of communication bus | - automatic updating from Internet               |
|              |                                | - off-line mode                                  |
|              |                                | - multi-media (tablet or PC)                     |

Most of the configurations are available from Ekip UP intuitive touchscreen display. Either way the ABB programming and commissioning Ekip Connect software tool allows the user to unlock the full potential of Ekip UP, having a user-friendly graphic interface and saving all project settings. From commissioning to implementation, through monitoring, testing and analysis, Ekip Connect is the perfect tool for guiding the user in the management of ABB devices throughout the whole product life cycle.

Using Ekip Connect, the user can manage power, acquire and analyze electrical values, and test protection, maintenance and diagnostic functions. Ekip UP units can be connected to the laptop, PC or tablet simply using the mini-USB interface port with Ekip Programming or Ekip T&P accessories. Other possibility is to scan the unit from the communication network where integrated. By this tool protection configuration and testing are available.

### **Commissioning Software**

### **Ekip Connect**

Panel builders
- 50% commissionig



#### Ease of use

Imagine you are a panel builder. You have to commission a switching device and you need to save time. You can! Using Ekip Connect it is possible to cut commissioning time by up to 50% instead of doing it manually. Providing a stress-free relationship with the device complexity, Ekip Connect is an easy-to-use software that has all the answers.

Ekip Connect's simple and intuitive interface means that, from the very start, it is possible to easily navigate through the tool and access every switching device operation. At a glance, the user can see all the information he needs, giving him the possibility to quickly and effectively assess any situation.

Facility manager 100% full exploitation of your device



#### **Full exploitation**

Imagine you are a facility manager. You need to perform fast and precise diagnosis in order to have everything under control and avoid failures. You can! Using Ekip Connect you can exploit the full capabilities of your device and thanks to the customizable dashboard you can organize your window into the deepest functions of the device just the way you want it. It is possible to manage all the CB settings and specifications directly with Ekip Connect, making it the perfect instrument for exploring and using the breaker.

Diagnostics are easy too: It is possible to consult and download the log of events, alarms and unit trips, thereby facilitating the identification and understanding of any anomalies.

One single software able to manage all ABB low voltage devices, giving a full integration.

Consultant/system integrator Complex logic at your fingertips



#### **Product enhancement**

Imagine you are a consultant or a system integrator and you want to implement advanced features while avoiding the risk of any error. You can! Using Ekip Connect it's possible to implement complex logic with a few clicks of your mouse. To add, set and manage advanced functions has never been so easy. Automatic transfer switch logic, load shedding, advanced protection and demand management can be managed and

easily set through the Ekip Connect software.

Expand software features by purchasing and downloading software packages for advanced functions directly using Ekip Connect.

Accessing the full potential of the switching device is finally possible. Thanks to Ekip Connect software, you can achieve complete utilization of the unit and more with a few clicks of your mouse.



#### Configuration

- Set protections
- Configure system and communication parameters
- Unit start-up



#### Monitoring & analysis

- · View CB status and measure
- · Read events list



#### **Product implementation**

- Set advanced protections
- Logic activation
- Enable advanced functions



#### **Testing & reporting**

- Check correct functionality
- · Perform tests
- Export report

For more information please refer to the product note for Ekip Connect - 1SDC210102D0201.



Ekip Connect is available for free download at http://www.abb.com/ abblibrary/Download-Center/



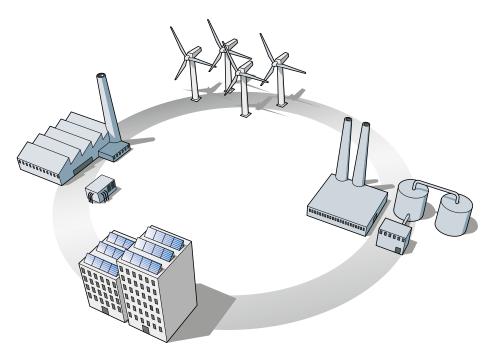
### **Connectivity**

### Supervision on the field

The integration of low voltage devices in fieldbus communication networks is perfect for automated industrial processes, industrial and petrochemical sites, modern data centers and intelligent electricity networks, better known as Microgrids or Smart Grids.

#### **Ekip Com Modules**

Thanks to the wide range of communication protocols, Ekip UP can be integrated into communication networks without the need of external interface devices.


The distinctive characteristics of the Ekip UP offering for industrial communication are:

- A wide range of supported protocols: the Ekip Com communication modules enable integration with the most common communication protocols based on RS485 serial lines and the most modern communication systems based on EtherNet™ infrastructures, which guarantee an exchange of data in the order of 100 Mbit/s.
- Installation times reduced to a minimum due to the plug & play technology of the communication modules.
- Redundancy of communication for greater reliability of the system; the unit can be equipped with two communication modules of the same protocol at the same time, thus allowing information to be exchanged simultaneously on two buses.

 More protocols available at the same time, like Modbus TCP/IP for BMS, Profinet for PLC and IEC 61850 for Scada.

Having advanced protocol connectivity, Ekip UP is ready for:

- interaction with medium voltage grid: the Ekip Com IEC61850 module is the solution for integrating Ekip UP into automated electrical substations based on the IEC 61850 standard without external devices. Ekip UP offers both input and output goose capabilities making communication with MV relays easy for selectivity and interlocking logics.
- Demand response programme: the Ekip Com OpenADR module enables Ekip UP to exchange data-reports with load aggregators and utilities as well receive power set point to be managed. Based on Internet wireless technology, the OpenADR standard certifies cybersecurity.
- Power automation logics: Ekip Link is based on proprietary ABB bus that ensures robustness granted by third party and unlock control capability in low voltage plants.
- Manage I/O based on protocols to execute opening and closing commands to switching devices from external supervision system.



| Ekip UP range                         | Monitor/Control     | Protect/Protect+/Control+ |
|---------------------------------------|---------------------|---------------------------|
| Protocols supported:                  |                     |                           |
| Modbus RTU                            | Ekip Com Modbus RTU |                           |
| Profibus-DP                           | Ekip Com Profibus   |                           |
| DeviceNet™                            | Ekip Com DeviceNet™ |                           |
| Modbus TCP/IP                         | Ekip Com Modbus TCP |                           |
| Profinet                              | Ekip Com Profinet   |                           |
| EtherNet/IP™                          | Ekip Com EtherNet™  |                           |
| IEC61850                              | Ekip Com IEC61850   |                           |
| Open ADR                              | Ekip Com OpenADR    |                           |
| ABB bus                               | Ekip Link           |                           |
| Control functions                     |                     |                           |
| Switching devices opening and closing | •                   | •                         |
| Measurement functions                 |                     |                           |
| Currents                              | •                   | •                         |
| Voltages                              | •                   | •                         |
| Powers                                | •                   | •                         |
| Energies                              | •                   | •                         |
| Harmonics                             | •                   | •                         |
| Network analyzer                      | •                   | •                         |
| Data logger                           | •                   | •                         |
| Adjustment functions                  |                     |                           |
| Setting of thresholds                 |                     | •                         |
| Resetting of alarms                   |                     | •                         |
| Diagnostic                            |                     |                           |
| Protection function alarms            |                     | •                         |
| Device alarms                         | •                   | •                         |
| Protection unit tripping details      |                     | •                         |
| Events log                            | •                   | •                         |
| Protection unit tripping log          |                     | •                         |
| Other data                            |                     |                           |
| ocal/remote mode                      | •                   | •                         |

For more information, please referer to the product note for the Communication - 1SDC210101D0201.



### **Connectivity**

### Supervision to the cloud

ABB Ability™ Electrical Distribution Control System is the innovative cloud-computing platform designed to monitor, optimize and control the electrical system.

Part of the ABB Ability™ offering, ABB Ability™ Electrical Distribution Control System is built on a state-of-the-art cloud architecture for data collection, processing and storage. This cloud architecture has been developed together with Microsoft in order to enhance performance and guarantee the highest reliability and security Through a compelling web app interface, ABB Ability™ Electrical Distribution Control System assists anytime and anywhere via smartphone, tablet or personal computer so the user can:

#### Monitor

Discover plant performance, supervise the electrical system and allocate costs to improve productivity and efficiency.

#### Optimize

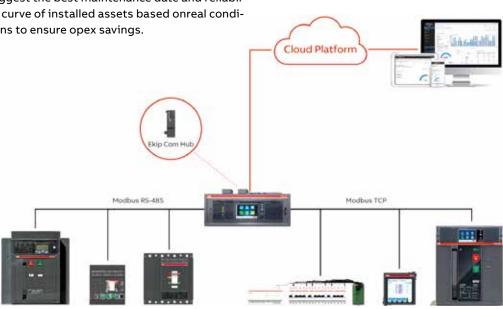
Schedule and analyze automatic reports, improve the use of assets and take the right business decision.

#### Predict

Suggest the best maintenance date and reliability curve of installed assets based onreal conditions to ensure opex savings.

#### Control

Set up alerts and notify key personnel, and remotely implement an effective power management strategy to achieve energy savings in a simple way.


The user can choose Ekip Com Hub module plugged into Ekip UP units to connect the switchgear into the cloud. ABB Ability™ Electrical Distribution Control System immediately connects to the low-voltage power distribution panel with plug and play devices:

- · Air circuit breakers
- · Molded-case circuit breakers
- · Miniature circuit breakers
- · Metering devices
- Switches and fusegears
- · Arc-guard devices
- · Soft starters
- · Low voltage or medium voltage relay

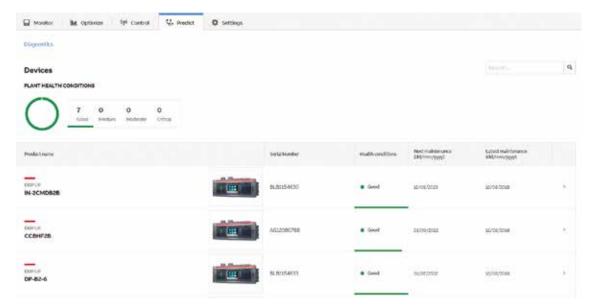
#### **Ekip UP solution with Ekip Com Hub**

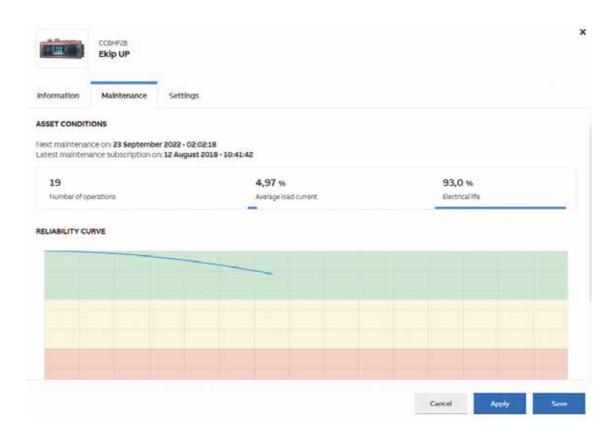
Ekip UP equipped with Ekip Com Hub cartridge module establishes the cloud connection for the whole switchboard. This dedicated cartridge type communication module just needs to be inserted into the terminal box and connected to the internet using an external router.

For more information, plase visit http://new.abb. com/low-voltage/launches/abb-ability-edcs.






### **Predictive Maintenance**


# Energy & Assets Management improves efficiency and reliability

In addition to safety protections and energy management, Ekip UP predicts the future of installed ABB assets. The digital unit enables the predictive maintenance function on existing circuit breakers or switch disconnectors available in the cloudbased platform ABB Ability<sup>TM</sup> EDCS.

Measuring directly the operation number, contact wear, current flowing in steady state and protection trip (overload., short circuit, earth faults),

the environmental factors (temperature, humidity, corrosion, dust level and vibrations) and thanks to the know how of ABB switching devices, the algorithm in ABB Ability EDCS provides the device reliability curve and suggests the next maintenance date.





The tool shows also the date of latest maintenance available in the device. Clicking on every single device, the reliability curve shows the historical trend of the product up to now.

Maintenance performed at the right time by ABB Authorized field service engineers has a positive influence on product health trends. With the right ABB training (ABB MAN or ABBL L2 or L3), the proper tools and genuine spare parts extending the working life of installations is simple. When latest maintenance is performed by not ABB authorized personnel, there is not effect on the reli-

ability curve. When an important event occurs to influence the next maintenance date, an automatic notification is sent.

ABB Ability EDCS's Predict feature for Ekip UP digital units enables users to optimize their power availability with targeted maintenance for both standard and critical applications, while maintaining

This function is coming soon in Ekip UP Protect, Protect+ and Control+ versions when applied with ABB New Emax and Emax 2 or GE Entelliguard devices.



Improve service profitability by optimizing maintenance costs



Extend product life by optimizing performance



Manage and connect from anywhere thanks to the ABB Ability ECDS Cloud based platform



Increase safety for devices and personnel by reducing the risk of unexpected shutdowns

# Accessories

| <b>5/</b> 2  | Ekip UP standard supply       |
|--------------|-------------------------------|
| <b>5/</b> 3  | Accessories for Ekip UP units |
| <b>5/</b> 3  | Power supply                  |
| <b>5/</b> 4  | Connectivity                  |
| <b>5/</b> 5  | Signalling                    |
| <b>5/</b> 6  | Measurements and protection   |
| <b>5/</b> 8  | Current sensors               |
| <b>5/</b> 9  | Testing and programming       |
| <b>5/</b> 10 | Service                       |

# **Ekip UP standard supply**

ABB Ekip UP comes standard with four input/output contacts and a measuring module for voltage metering. A rating plug needs to be selected during ordering and factory installed (see Chapter 8).

 Type A are provided with a pallet packaging due to weight. Ekip UP is made in Italy and comes packaged with:

- Mounting clips (DIN-rail, door-mounted), terminals and insertion bridge for voltage sockets. This is useful in the applications in which voltage measurements are not strictly required.
- · Mandatory accessory
  - Current sensors in the different types available (1)
  - Cable kit
  - Power supply module
- · Optional accessory
  - Cartridge module for connectivity, signaling, synchrocheck
- · Getting Started and module Kit Sheet

The content of the package is visible from the ordering label.

Other accessories are packaged separately. Each Ekip UP is provided with a production report to mantain compete traceability of the product, with primary current injection tests executed from factory.

Ekip UP packaging is transit tested by ISTA. QR code printed there enables the access to product global web-site.



# **Accessories for Ekip UP units**

All Ekip UP accessories are plug& play, they come pre-configured for easy installation.

| Installation                | Modules                                    | Highlights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal box                | Cartridge modules:                         | - The Ekip Supply module enables the trip units to be supplied with a range of DC control voltages                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | - Ekip Com<br>- Ekip Link                  | - The Ekip Supply module is a mandatory accessory.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | - Ekip Lilik<br>- Ekip 2K<br>- Ekip Supply | - The Ekip Supply module has a dedicated position in the installation area in the terminal box; the other modules can be installed as desired in the positions available                                                                                                                                                                                                                                                                                                                       |
|                             | - Ekip Synchrocheck<br>- Ekip 3T           | - Up to 4 additional modules, among Ekip 2k, Ekip 3T, Ekip Com and Ekip Synchrocheck, can be installed together with Ekip Supply. Up to 3 Ekip 2k can be used.                                                                                                                                                                                                                                                                                                                                 |
| Accessorizing               | Ekip Measuring                             | - These are installed in specific housings                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| area                        | Ekip Signalling 4K<br>Rating Plug          | <ul> <li>Ekip Measuring module is all time provided with Ekip UP units and enables voltage measurements<br/>directly or using voltage sensors.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |
|                             | Battery for Ekip                           | <ul> <li>Ekip Signallling 4k, standard supplied, makes the interface of Ekip UP units for protection easy with switching devices or switch-disconnectors. As 4 digital I/O, these can be used also for signalling based on event, increasing the remote signalling possibilities, or activating internal logics.</li> <li>In Ekip UP Protect, Protect+ and Control+ versions the I/O contacts enable opening and closing commands of switching devices as well as status feedbacks.</li> </ul> |
|                             |                                            | <ul> <li>Ekip UP from the factory installed own rating plug according to plant rated current. It is possible<br/>to change it, even after the installation according to new requirements (for example, plant<br/>extension).</li> </ul>                                                                                                                                                                                                                                                        |
|                             |                                            | Internal battery enables the cause of the fault to be indicated after a trip, without a time limit. In addition, the battery enables date and time to be updated, thus ensuring the chronology of the events.                                                                                                                                                                                                                                                                                  |
| Ekip trip unit<br>test port | Ekip T&P<br>Ekip TT                        | <ul> <li>These accessories can be connected to the front test port of the trip units even with the device in<br/>operation to perform commissioning activity on Ekip Connect.</li> </ul>                                                                                                                                                                                                                                                                                                       |
|                             |                                            | - Compatible also with the SACE Tmax XT and SACE Emax 2 ranges.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| External                    | Ekip 10K                                   | - Several Ekip Signalling 10K can be connected at the same time to the same Ekip UP units using local bus or ABB Ekip Link bus based on ethernet.                                                                                                                                                                                                                                                                                                                                              |
|                             | Ekip Signalling<br>Modbus TCP              | <ul> <li>This DIN-rail distributed I/O allow open/closed contacts to be received by Ekip UP in the cloud<br/>architecture.</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |
|                             | Homopolar toroid<br>Differential toroid    | <ul> <li>These are connected to the trip unit by the terminal box of the Ekip UP to perform Rc (differential<br/>earth fault) and Gext (source ground fault, also for restriced/unrestricted earth fault diagnosis)<br/>protections.</li> </ul>                                                                                                                                                                                                                                                |



#### \_

### Power supply

### Ekip Supply module (Fig.1)

The Ekip Supply module supplies all Ekip UP units and modules present on the terminal box of the digital unit with DC auxiliary power available in the switchgear.

The module is mounted in the terminal box and permits the installation of the other advanced modules. It is installed at the first installation of the device.

The available module is:

• Ekip Supply 24-48V DC

Electrical diagram reference: figures 31, 32

## **Accessories for Ekip UP units**



Fig. 2

#### Connectivity (Fig.2)

The Ekip Com modules enable all Ekip UP units to be integrated in an industrial communication network for remote supervision and control of the circuit-breaker. They are suitable for all Ekip UP versions. Several Ekip Com modules can be installed at the same time, thereby enabling connection to communication systems that use different protocols.

The Ekip Com modules for Modbus RTU, Profibus-DP and DeviceNet™ contain a terminating resistor and dip switch for optional activation to terminate the serial network or bus.

The Profibus-DP module also contains a polarization resistor and dip switch for its activation. For industrial applications where superior reliability of the communication network is required, the Ekip Com R communication modules, installed together with the corresponding Ekip Com modules, guarantee redundant connection to the network.

The Ekip Com modules enable Ekip trip units to be connected to networks that use the following protocols:

| Protocol           | Ekip Com Module                       | Ekip Com Redundant Module                     |  |
|--------------------|---------------------------------------|-----------------------------------------------|--|
| Modbus RTU         | Ekip Com Modbus RS-485                | Ekip Com R Modbus RS-485                      |  |
| Modbus TCP         | Ekip Com Modbus TCP                   | Ekip com R Modbus TCP                         |  |
| Profibus-DP        | Ekip Com Profibus                     | Ekip Com R Profibus                           |  |
| Profinet           | Ekip Com Profinet                     | Ekip Com R Profinet                           |  |
| EtherNet/IP™       | Ekip Com EtherNet/IP™                 | Ekip Com EtherNet/IP™ Ekip Com R EtherNet/IP™ |  |
| DeviceNet™         | Ekip Com DeviceNet™                   | Ekip Com DeviceNet™ Ekip Com R DeviceNet™     |  |
| IEC61850           | Ekip Com IEC61850 Ekip Com R IEC61850 |                                               |  |
| Open ADR           | Ekip Com OpenADR                      | =                                             |  |
| Cloud connectivity | Ekip Com Hub                          | -                                             |  |

Electrical diagram reference: figures from 51 to 59. Redundant version from 61 to 67.

#### **Ekip Link Module (Fig.3)**

The Ekip Link module enables the Ekip UP units to be connected to ABB communication system for power automation logics, like Power Controller, ATS or load shedding logics.

It is suitable for all Ekip units and can be factory or field installed in the device terminal box, even when Ekip Com communication modules are present. In this way, it is possible to have a complete supervision of the system by means of the Ekip Com modules connected to the communication network.

Electrical diagram reference: figure 58



— Fig. 4

Fig. 3

### Ekip Com Hub (Fig.4)

Ekip Com Hub is the new communication module for Ekip UP cloud-connectivity.

Ekip UP equipped with Ekip Com Hub can establish the direct connection to ABB Ability™ Electrical Distribution Control System for the whole low-voltage power distribution panel. This dedicated cartridge-type communication module just needs to be inserted into the terminal box and connected to the internet. For further information related to ABB Ability™ Electrical Distribution Control System, please see Chapter 4.

Electrical diagram reference: figures 59



Fig. 5

#### Ekip Com OpenADR (Fig. 5)

Ekip Com OpenADR is the latest communication module for Ekip UP that become ready for demand response applications. In compliance with OpenADR profile 2.0b, thanks to this module, Ekip UP becomes the virtual end node of demand response, communicating directly with utilities or load aggregators virtual top nodes, in order to change power flow setpoints of the low voltage plant and send reports with metering data.

ACCESSORIES 5/5



Fig. 6A

### Signalling

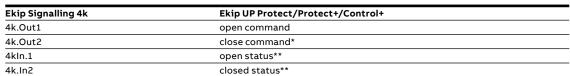
#### Ekip 2K Signalling modules (Fig.6)

The Ekip 2K Signalling modules supply two input and two output contacts for control and remote signalling of alarms and switching device status/trips. They can be programmed from the unit's display or through Ekip Connect software. Furthermore, when using Ekip Connect, combinations of events can be freely configured. They are suitable for all Ekip UP versions. Three versions of the Ekip 2K Signalling modules are available: Ekip 2K-1, Ekip 2K-2, Ekip 2K-3.

Electrical diagram reference: figures 41, 42, 43



The Ekip 3T Signalling modules supply three analog inputs for thermo-resistances PT1000 and one analog input 4-20mA for external sensors (for example, gas/humidity meters). These input data are available in the digital unit. Through the Ekip Connect software is possible to set different thresholds and link them to digital signals. Up to two cartridge module can be installed in the same unit. PT1000 sensors are available as options. The Ekip 3T Signalling modules are suitable for all Ekip UP versions. For more information, please refer to the product note for Ekip Signalling 3T - 1SDC210109D0201.






#### Ekip 4K signalling module (Fig.7)

The Ekip 4K Signalling module, available as standard in all Ekip UP units, supplies four digital input contacts and four digital output contacts for control and remote signalling. Related to the contact, green led lights are available from the front of the unit. It can be programmed from the touchscreen display or through the Ekip Connect software.

Furthermore, when using Ekip Connect, combinations of events can be freely configured. The terminals are provided in the package of Ekip UP. In Ekip UP Protect/Protect+/Control+ versions, there is this configuration to be ready for protection:



<sup>\*</sup> possible change to normal use with Ekip Connect

The signalling contact switching time is 7ms max.

It is possible to connect directly the open and closing contacts to actuators on switching devices. These can be opening or, where possible to program external trip function, trip coil to open the switching device and closing coils or motor operators to close it. The time to open the switching device is the sum of protection trigger (depending on timing settings), contact switching time and switching device opening time through opening or trip coil. If needed, a dedicated contact can be programmed to open the switching device through under-voltage coil. If the actuators inrush power requested exceeds the value listed below, it is necessary to use auxiliary relays.

| Rated Voltage [V] | Inrush Power [W/VA] |
|-------------------|---------------------|
| 30 Vdc            | 60                  |
| 50Vdc             | 40                  |
| 150Vdc            | 30                  |
| 250Vac            | 1000                |

For more details, please refer to dedicated manual, doc. 1SDH002003A1001.

Electrical diagram reference: figure 20A, 20B



Fig. 7

<sup>\*\*</sup> possible change to normal use or with 4K. In2 for close status with Ekip Connect

### **Accessories for Ekip UP units**



— Fig. 8

#### Ekip 10K signalling unit (Fig.8)

Ekip 10K Signalling is an external signalling unit designed for DIN rail installations for Ekip UP distributed I/O. The unit provides ten contacts for electrical signalling of timing and tripping of protection devices. If connected via Ekip Connect software, the contacts can be freely configured in association with any event and alarm or combination of both.

The Ekip 10K Signalling module can be powered either by direct or alternating current and can be connected to all the units via internal bus or Ekip Link modules.

Several Ekip 10K Signalling can be installed at the same time on the same Ekip unit; max 3 by local bus, according to Ethernet band rate if using Ekip Link architecture.

Electrical diagram reference: figure 103



Eig 9

#### **Ekip Signalling Modbus TCP (Fig.8)**

It is an external signalling unit designed for DIN rail installations. Function of the signalling module is to share - via an Ethernet network with Modbus TCP communication protocol - information about the state of other switching devices that might not have the ability to provide such information via Ethernet, and also to allow these products to be operated via remote control.

| Characteristics of output contacts |        |                        | Number of contacts    |                       |                         |
|------------------------------------|--------|------------------------|-----------------------|-----------------------|-------------------------|
| Туре                               |        | Monostable             | Ekip 2K               | Ekip 4K               | Ekip 10K                |
| Maximum switching volt             | tage   | 150V DC / 250V AC      |                       |                       |                         |
| Maximum switching cur              | rent   |                        |                       |                       |                         |
| 3                                  | OV DC  | 2A                     |                       |                       |                         |
|                                    | OV DC  | 0.8A                   | 2 output<br>+ 2 input | 4 output<br>+ 4 input | 10 output<br>+ 11 input |
| 1                                  | 50V DC | 0.2A                   | · Z iiiput            | · + iliput            | · II iliput             |
| 2                                  | 50V AC | 4A                     |                       |                       |                         |
| Contact/coil insulation            |        | 1000 Vrms (1min @50Hz) |                       |                       |                         |

| Ekip 10K signalling unit power | supply                      |  |
|--------------------------------|-----------------------------|--|
| Auxiliary supply               | 24-48V DC, 110-240V AC/DC   |  |
| Voltage range                  | 21.5-53V DC, 105-265V AC/DC |  |
| Rated power                    | 10VA/W                      |  |
| Inrush current                 | 1A for 10ms                 |  |



— Fig. 10

### Measurement and protection

#### Ekip Measuring module (Fig.10)

The Ekip Measuring module enables the unit to measure the phase and neutral voltages, power and energy. The Ekip Measuring module is always installed on the front, right housing of the units, without having to remove the touchscreen display itself. The voltage busbars can be connected to the Ekip Measuring four input sockets according to scheme in Chapter 7:

- directly with insulation requirements according to IEC 61010 and UL508 Standards
- using single-phase voltage transformers to comply with IEC 60255-27 Standard for protective relays with these specifications
  - secundary voltage rating 100:√3
  - precision class 0.2
  - power absorprtion 4VA

The module must be disconnected during the dielectric withstand tests on the main busbars.

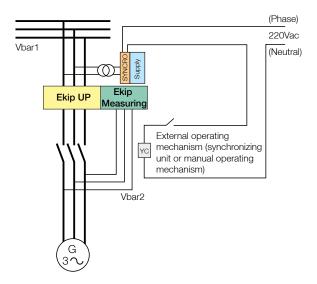
Electrical diagram reference: figures 11, 12, 13, 14

ACCESSORIES 5/7



— Fig. 11

### **Ekip Synchrocheck (Fig.11)**


This module enables the control of the synchronism condition when placing two lines in parallel enabling ANSI 25. The module can be used with Ekip UP Protect/Protect+/Control+.

Ekip Synchrochek measures the voltage values on two phases of one line through an external transformer and compares them to the measured voltages at Ekip UP. An output contact is available, which is activated upon reaching synchronism, and enables the switching device interfaced to be closed by means of wiring with the closing coil.

| Characteristi  | ics of output contacts |                        | Number of contacts |
|----------------|------------------------|------------------------|--------------------|
| Туре           |                        | Monostable             | Ekip Synchrocheck  |
| Maximum swi    | itching voltage        | 150V DC / 250V AC      |                    |
| Maximum swi    | itching current        |                        |                    |
|                | 30V DC                 | 2A                     | 1                  |
|                | 50V DC                 | 0.8A                   | output             |
|                | 150V DC                | 0.2A                   |                    |
|                | 250V AC                | 4A                     |                    |
| Contact/coil i | insulation             | 1000 Vrms (1min @50Hz) |                    |

\_

Electrical diagram reference: figure 44





— Fig. 12

### Rating Plug (Fig.12)

The rating plugs are field-interchangeable from the front on all units and enable the protection thresholds to be adjusted according to the actual rated current of the system. Rating Plug is a mandatory accessory for Ekip UP units, but can be purchased also as loose accessory.

This function is particularly advantageous in installations that may require future expansion or in cases where the power supplied needs to be limited temporarily (e.g. mobile Gen Set).

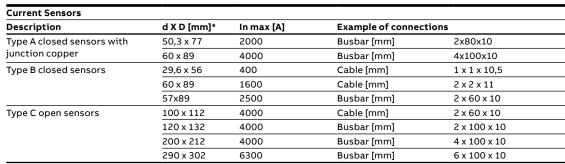
| Digital unit         | Rating plugs available                                                         |
|----------------------|--------------------------------------------------------------------------------|
| Ekip UP all versions | 100-200-250-400-600-630-800-1000-1200-1250-1600-2000-2500-3000-3200-3600 -4000 |
| ERIP OF all versions | 5000-6000-6300                                                                 |

Special rating plugs are also available for differential protection against earthing faults in combination with a suitable toroid to be installed externally.

| Digital unit         | Rating plug available for Rc protection                                        |
|----------------------|--------------------------------------------------------------------------------|
| Ekip UP all versions | 100-200-250-400-600-630-800-1000-1200-1250-1600-2000-2500-3000-3200-3600 -4000 |

### **Accessories for Ekip UP units**

### Current sensors


#### Current sensors for three/four lines

Ekip UP units have four types of current sensors' technology suitable that are included in the package as mandatory configured accessories. The current sensor can be ordered as loose accessories only for replacement or changing from 3 poles to 4 poles reasons. Except insertion bridges, being based on on Rogowski technology, without core-saturation effect, they guarantee high flexibility, huge range linearity, from few Amps to hundred kAmps without frequency limit, and easy detection of quickly current variations as well as harmonic contents. Ekip UP has a compact solution for every situation, available both for 3 or 4 poles. 3 meters of cable enable the connection in every switchgear, maintaining EMC performances. A specific getting started explains the installation procedure.

- Type A (Fig.13) This type is a closed sensor with copper terminals for busbars. Type A current sensors are recommended for new plants to optimize current capacity in the reduced space inside the switch-gear. Type A current sensors have a dedicated label for phase and polarity, so as to get an easy installation. They are calibrated directly from the factory with also primary injection tests done.
- Type B (Fig.14) This type is a closed sensor without copper terminals inside. Type B current sensors are recommended as a cost-effective solution for new and existing electrical systems, especially with cable connections. As Type A, also type B current sensors has a dedicated label for phase and polarity as well as the same calibration procedure.
- Type C (Fig.15) This type is a plug-in sensor, very light and flexible so to be installed even in small spaces and suspended on measured conductor, with no external power supplier required. Type C current sensors are typically used in old switchgear, as they can be added even without shutdown if the technician can work under voltage condition according to local standards. The installation time is less than 80% compared to traditional current transfomers and there is no need to disconnect cables or busbars thanks to the split-core. They have a dedicated printed label for polarity indication. The busbars or cables can be positioned using dedicated devices.

The following table summarize main performances as examples of connections for cables or busbars.

Electrical diagram reference: figure 17, 18



\*d: internal diameter - D: main external dimension

• Type D (Fig.16) This type refers to insertion bridges for current sockets that can be used in the applications in which current sensors are not strictly required, for example for Interface Protection System (IPS) or special gateway applications. Four insertion bridges are provided for each phase current that can be excluded. Configured with insertion bridges, Ekip UP is ready to be used with Type C 100 or Type C 120 current sensor kits, 3 or 4 poles.

#### Positioning device (Fig. 17)

Thanks to this device, positioning of busbars and cables with type C current sensors becomes easier, as no other ties or equipments are needed. It is compatible with busbar connection up to 2x80x10 [mm].



Fig. 13



Fig. 14



Fig. 15





Fig. 17

ACCESSORIES 5/9



#### Homopolar toroid for the earthing conductor of main power supply (Fig.18)

Ekip UP Protect/Protect+/Control+ can be used with an external toroid positioned, for example, on the conductor that connects the star center of the MV/LV transformer to earth (homopolar transformer): in this case, the earth protection is called Source Ground Return. There are four sizes of the toroid: 100A, 250A, 400A, 800A. The homopolar toroid is an alternative to the toroid for differential protection.

Electrical diagram reference: figure 25





### Toroid for differential protection (Fig.19)

Connected to the Ekip UP Protect/Protect+/Control+ equipped with a rating plug for differential protection, this toroid enables earth fault currents of 3...30A to be monitored.

To be installed on the busbar system, it is an alternative to the homopolar toroid.

Electrical diagram reference: figure 24, 24A

— Fig. 19



### Testing and programming

### Ekip TT testing and power supply unit (Fig.20)

Ekip TT is a device that allows you to verify that the Ekip UP opening and closing contacts based on protection trip mechanism is functioning correctly (protection test).

The device can be connected to the front test connector of any touschreen display of Ekip UP; trip test can be also performed with auxiliary supply using the dedicated section in the touschreen display without this accessory.

Fig. 20



Fig. 21

#### Ekip T&P testing kit (Fig.21)

Ekip T&P is a kit that includes different components for programming and testing the electronic protection trip units. The kit includes:

- Ekip T&P unit;
- Ekip TT unit;
- USB cable to connect the T&P unit to the Ekip units;
- installation CD for Ekip Connect and Ekip T&P interface software.

The Ekip T&P unit is easily connected from your PC (via USB) to the unit (via mini USB) with the cable provided. The Ekip T&P unit can perform simple manual or automatic tests on the unit functions. The Ekip T&P will also provide the ability to conduct more advanced function configuration that allows the addition of harmonics and the shifting of phases to more accurately represent the real conditions of an application. Thus, setting of more suitable protection functions usually required for critical applications becomes easier. Ekip T&P can also generate a test report as well as help you to monitor maintenance schedules.



— Fig. 22

#### **Ekip Programming Module (Fig.22)**

The Ekip Programming module is used for programming Ekip units from your PC via USB using the Ekip Connect software that can be downloaded on-line. This can be useful for uploading/ downloading entire sets of parameters for multiple switching devices both for set-up as well as for maintenance (for a periodical back-up of the protection parameters in case of a catastrophic situation).

For more details about Ekip Connect, please see Chapter 4.

### **Service**

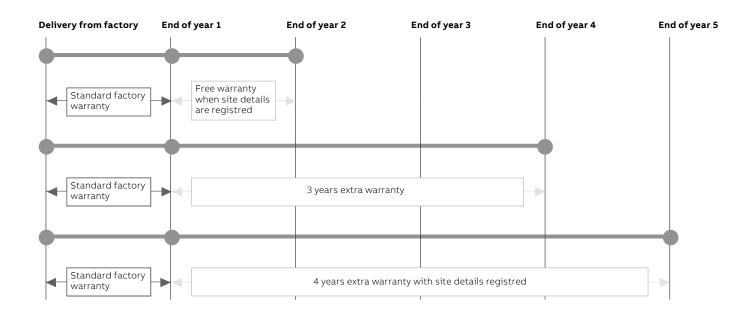


### Extended warranty

For ABB Low Voltage digital unit, extending the 1-year standard factory warranty to up to 5 years has never been so simple.

Extended warranty activation can be requested after the online registration in the Extended Warranty tool. This web-tool verifies that the application of the digital unit is within the recommended guidelines, and grant the registration of the Ekip UP.

When end users details are registered, one year of extra warranty is offered free-of-charge.


Extended Warranty can be ordered by following the steps:

- 1) Registration in the online tool (Extended Warranty Tool) to verify the application.
- 2) Extended Warranty part number(s) and registration code received by email
- 3) Place the order of the digital unit together with:
  - Extended warranty part number(s)
  - Unique registration code

#### Warranty coverage:

- Any possible issues related to circuit breaker quality for the complete extra warranty time
- Accessories mounted by the factory only.





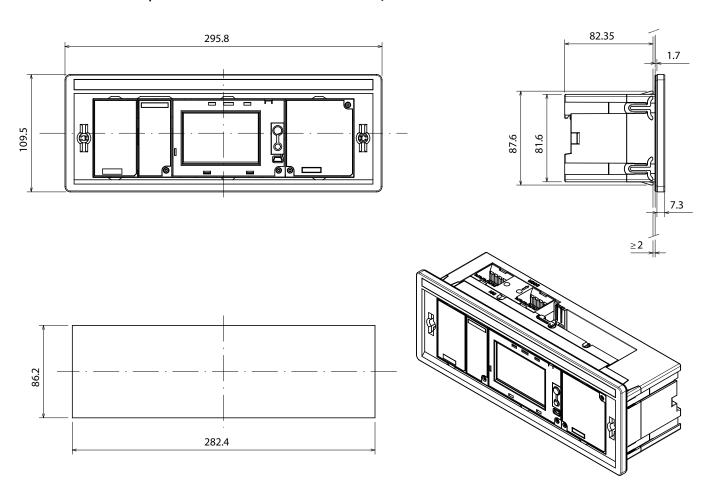
DIMENSIONS

# **Dimensions**

- **6/**2 Ekip UP unit dimensions
- **6/**7 Current sensor dimensions

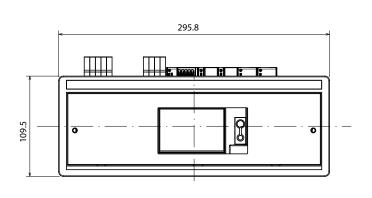
### **Ekip UP unit dimensions**

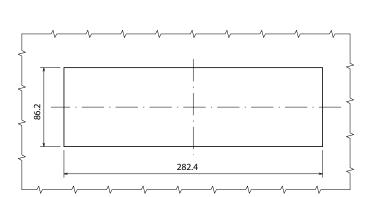
Ekip UP is a plug & play unit that ensures easy installation, even adding current and voltage sensors wherever wanted in the plant layout.

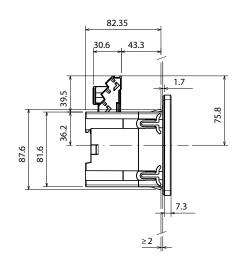

Ekip UP can be door-on rail mounted, fitting all the requirements either in power distribution or either in process automation. DIN-rail mounting option is also very useful when it is better not to occupy space on the front doors of the switchgears. Ekip UP depth is one of the smallest among external units, so it is suitable for many

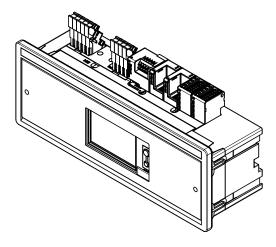
switchgear sizes. Besides, the terminals (of the signaling contacts) can rotate according to the mold-printed mounting options.

Current and voltage sensors should be applied to the dedicated numbered sockets. Current sockets are directly provided by ABB in different versions, as 3/4 poles or opening/closing Rogowski coils. They fit the current range and the space available among bus-bars/cables in the switchgear. Commercial voltage sensors can be applied following ABB specifications as described in Chapter 5.


DIMENSIONS 6/3

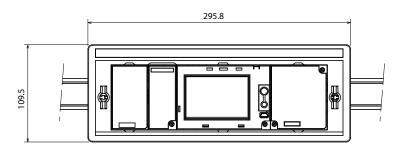

### Ekip UP unit door-mounted without modules/terminals

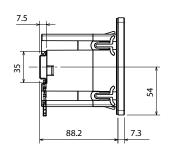


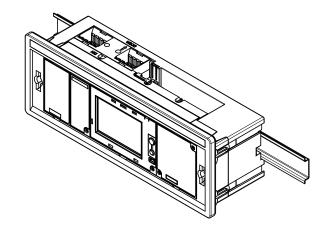


# **Ekip UP unit dimensions**

### Ekip UP unit door-mounted with modules/terminals



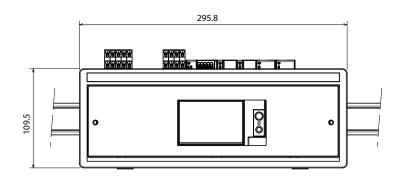


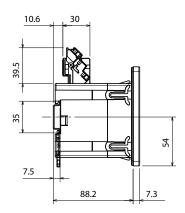



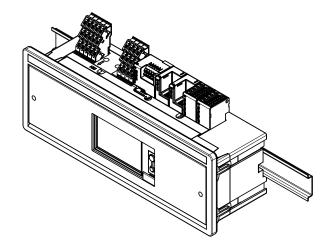




DIMENSIONS 6/5

### Ekip UP unit DIN-rail mounted without modules/terminals

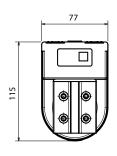


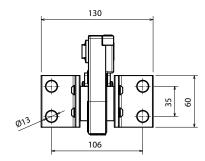



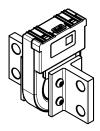



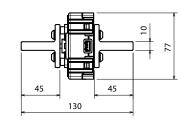

# **Ekip UP unit dimensions**

Ekip UP unit DIN-rail mounted with modules/terminals

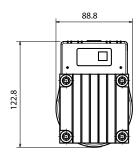


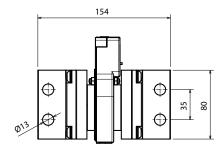



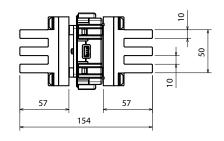


### **Current sensor dimensions**

### Current sensor type A 100A-2000A



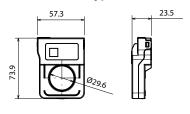






### Current sensor type A 2000A-4000A

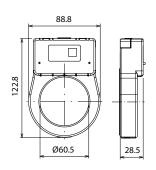




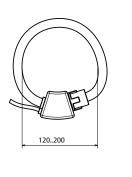





### **Current sensor dimensions**

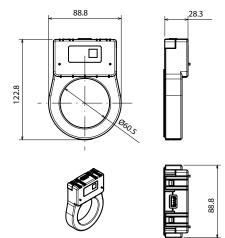

Current sensor type B 100A-400A



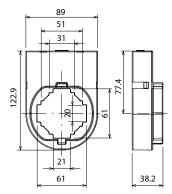




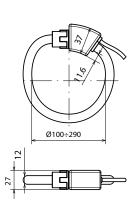

Current sensor type B up to 1600A




Current sensor type C 120mm-200mm







### Current sensor type B 400A-1600A



Current sensor type B up to 2500A



Current sensor type C Ø 100-120-200 mm up to 4000A Ø 290 mm from 2000A to 6300A



WIRING DIAGRAMS 7/1

# Wiring diagrams

| <b>7/</b> 2 | Reading | information |
|-------------|---------|-------------|
|             |         |             |

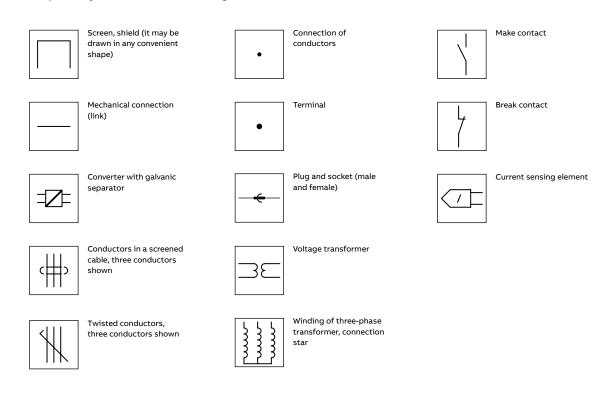
- **7/**5 **Terminal blocks**
- 7/6 Ekip UP unit
- **7/**13 **Electrical accessories**

# **Reading information**

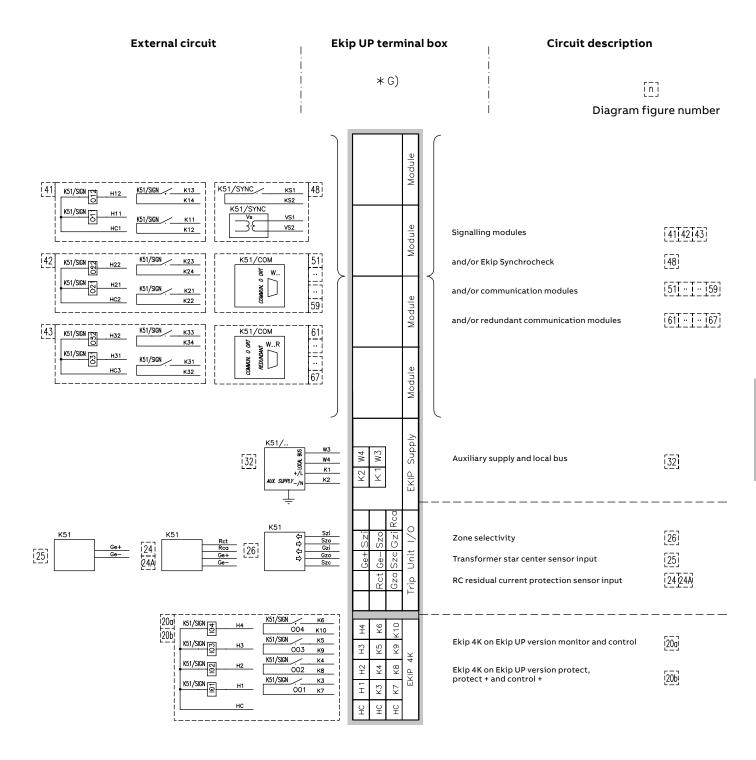
| Descr      | iption of figures                                                                       | Key          |                                                                                              |
|------------|-----------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------|
| 11)        | Ekip UP with external voltage transformer and 3P configuration                          | *            | = See the note indicated by the letter                                                       |
| 12)        | Ekip UP with external voltage transformer and 4P configuration                          | А3           | = Applications located on terminal board and connector of Ekip Up                            |
| 13)        | Ekip UP without external voltage transformer and 3P configuration                       | A4           | = Indicative devices and connections for control and signalling,                             |
| 14)        | Ekip UP without external voltage trans-                                                 |              | outside Ekip Up                                                                              |
| 15)        | former and 4P configuration Ekip UP for residual voltage protection                     | BUS1<br>BUS2 | <ul><li>Serial interface with external bus</li><li>Redundant serial interface with</li></ul> |
| 13)        | (only for Protect+ and Control+) with exter-                                            | DOSE         | external bus                                                                                 |
|            | nal transformer                                                                         | LINK BUS     | = Interface with the external Link                                                           |
| 16)        | Ekip UP for residual voltage protection                                                 | 67:/55:      | bus                                                                                          |
|            | (only for Protect+ and Control+) without external transformer                           | GZi(DBi)     | <ul> <li>Zone selectivity input for G</li> <li>protection or backward input for</li> </ul>   |
| 17)        | Ekip UP current sensor connection and 4P                                                |              | D protection                                                                                 |
| •          | configuration                                                                           | GZo(DBo)     | = Zone selectivity output for G                                                              |
| 18)        | Ekip UP current sensor connection and 4P                                                |              | protection or backward output for                                                            |
| 19A)       | configuration Bridges for Ekip UP without current                                       | 10132        | D protection = Programmable digital inputs                                                   |
| 19A)       | connections                                                                             | K51          | = Electronic device Ekip Up for con-                                                         |
| 19B)       | Bridges for Ekip UP without voltage                                                     |              | trol and measuring                                                                           |
|            | connections                                                                             | K51/COM      | = Communication module                                                                       |
|            | Ekip UP 4k                                                                              | K51/MEAS     | = Measurement module                                                                         |
| 20C)       | Ekip 4k on Ekip UP protect, protect+, and control+ version with YO and YC command and 2 | K51/SIGN     | = Signalling module                                                                          |
|            | status input                                                                            | K51/SUPPLY   | = Auxiliary supply module (110-<br>240VAC/DC and 24-48VDC)                                   |
| 24)        | RC residual current protection sensor input                                             | K51/SYNC     | = Synchronization module                                                                     |
| •          | (ANSI 64&50NTD)                                                                         | K51/YC       | = Closing control from the EKIP                                                              |
| 24A)       | RC differential ground fault protection sen-                                            |              | protection trip unit                                                                         |
| 25)        | sor input (ANSI 87N)                                                                    | K51/YO       | = Opening control from the EKIP                                                              |
| 25)<br>26) | Transformer star center sensor input Zone selectivity                                   | М            | protection trip unit<br>= Motor for loading closing springs                                  |
| 32)        | Auxiliary supply through module 24-48V DC                                               | O 0132       | = Programmable signalling contacts                                                           |
| ,          | and local bus                                                                           | O SC         | = Contact for synchronism control                                                            |
| 41)        | Ekip Signalling 2K-1                                                                    | RC           | = RC (residual current) protection                                                           |
| 42)        | Ekip Signalling 2K-2                                                                    |              | sensor                                                                                       |
| 43)        | Ekip Signalling 2K-3                                                                    | SZi(DFi)     | = Zone selectivity input for S protection or forward input for D protec-                     |
| 44)<br>51) | Ekip Sinchrocheck Ekip Com Modbus RTU                                                   |              | tion or forward input for 5 protec-                                                          |
| 52)        | Ekip Com Modbus TCP                                                                     | SZo(DFo)     | = Zone selectivity output for S pro-                                                         |
| 53)        | Ekip Com Profibus DP                                                                    |              | tection or forward output for D                                                              |
| 54)        | Ekip Com Profinet                                                                       |              | protection                                                                                   |
| 55)        | Ekip Com Devicenet ™                                                                    | TU1TU2       | = Insulation voltage transformer                                                             |
| 56)<br>57) | Ekip Com Ethernet/IP ™<br>Ekip Com IEC 61850                                            | Uaux         | (outside circuit-breaker) = Auxiliary supply voltage                                         |
| 58)        | Ekip Link                                                                               |              | = Current sensor phase L1-L2-L3                                                              |
| 59)        | Ekip Hub                                                                                | UI/N         | = Current sensor on neutral                                                                  |
| 61)        | Ekip Com Redundant Modbus RTU                                                           | UI/O         | = Homopolar current sensor                                                                   |
| 62)        | Ekip Com Redundant Modbus TCP                                                           | W2           | = Serial interface with internal bus                                                         |
| 63)        | Ekip Com Redundant Profibus DP                                                          | 14/O 14/1/4  | (local bus)                                                                                  |
| 64)<br>65) | Ekip Com redundant Profinet Ekip Com redundant Devicenet ™                              | W9W14        | = RJ45 connector for communication modules                                                   |
| 66)        | Ekip Com redundant Ethernet/IP ™                                                        | W9R.W12R     | = RJ45 connector for redundant                                                               |
| 67)        | Ekip Com redundant IEC 61850                                                            |              | communication modules                                                                        |
| 103)       | Ekip Signalling 10k                                                                     |              |                                                                                              |
|            |                                                                                         |              |                                                                                              |

WIRING DIAGRAMS 7/3

#### Notes

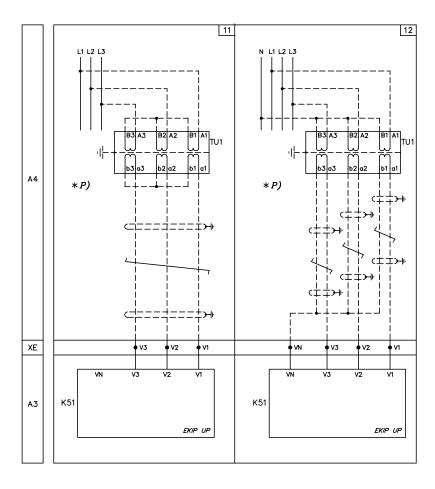

- A For the zone selectivity and local bus function the presence of auxiliary power supply (refer to diagram 1SDM000116R0001 figure 32)
- B The connections between the RC residual current protection sensor and the poles of X connector of Ekip Up must be made with 4-pole shielded cable with conductors twisted in pairs (type BELDEN 9696 or equivalent) 10 m maximum length.
- C The connection between terminals 1 and 2 of the current transformer and Ge+ and Ge- unit I/O terminals of the upper X terminal box must be made with shielded and stranded 2-pole cable (type BELDEN 9841 or equivalent) 15 m maximum length.
- D Obligatory in case of presence of Ekip modules Ekip module.
- E The Ekip Com module selected can be redundant if required, by choosing between Fig. 61...67.
- F Use cables type BELDEN 3105A or equivalent.
- G Terminal box available in DIN mounting configuration.
- H Use cables type BELDEN 3105A or equivalent, 15 m maximum length.
- I RJ45 recommended cable: CAT6 STP.
- J For the serial line connection EIA RS 485, refer to "Technical Application Paper QT9: Bus Communication with ABB Circuit-Breakers".
- K Bridge-connect the terminals "120 Ohm on" if you want to insert a termination resistance on the Local Bus.
- L Use cables type Belden 3079A or equivalent. For further details see White Paper 1SDC007412G0201 "Communication with SACE Emax2 Circuit-Breakers"
- M Use cables type Belden 3084A or equivalent.
   For further details see White Paper
   1SDC007412G0201 "Communication with
   SACE Emax2 Circuit-Breakers"
- O For connection of W3 and W4 see Fig 32.
- P Use a twisted pair shielded and stranded cable type BELDEN 8762/8772 or equivalent. The shield must be earthed on the selectivity input side (for zone selectivity) or on both sides (for others applications).
- Q The maximum secondary rated voltage admit ted is 120V.
- R The connection without transformer does not comply with the insulation required by the standard IEC 60255-1.

S Input and output are shown as factory default setting with 1 status input: O 01 output connected to the opening coil of the circuit-breaker/disconnector; O 02 output connected to the closing coil (or motor) of the circuit-breaker/disconnector; I 01 input connected to status input (contact closed equals to CB status = Open). For the operating limits, the configuration solutions of O 02 and I 01 and for the setting of all other input/output see the Ekip UP user manual, s(section Ekip 4k).

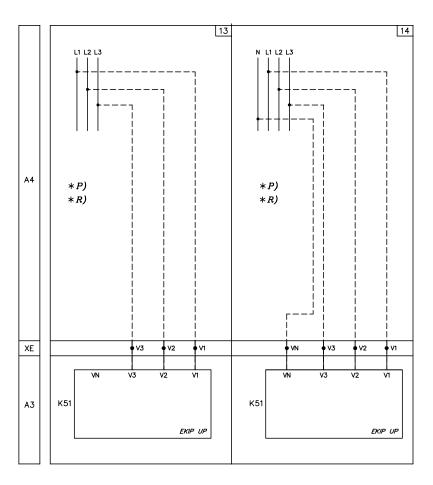

For more Ekip UP wiring diagrams, please refer to 1SDM000116R0001.

# **Reading information**

### Graphical symbols for electrical diagrams (Standards IEC 617)

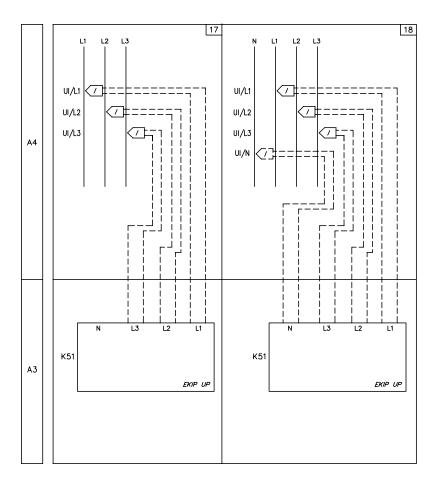



### **Terminal blocks**



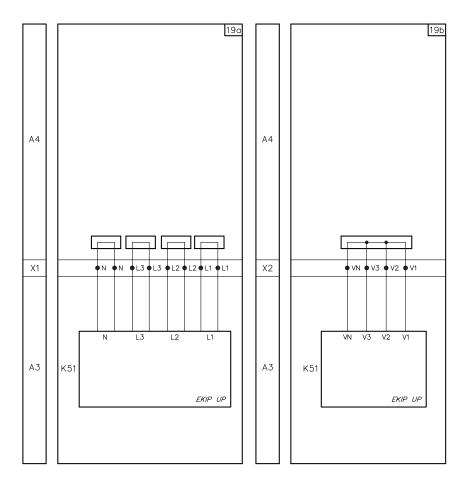

# **Ekip UP unit**

- 11) Ekip UP with external voltage transformer and 3P configuration
- 12) Ekip UP with external voltage transformer and 4P configuration




- 13) Ekip UP without external voltage transformer and 3P configuration
- 14) Ekip UP without external voltage transformer and 4P configuration




# **Ekip UP unit**

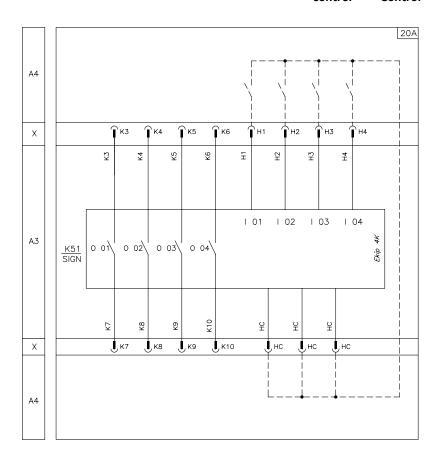
- 17) Ekip UP current sensor connection and 3P configuration
- 18) Ekip UP current sensor connection and 4P configuration



### 07

### 19A) Bridges for Ekip UP without current connections 19B) Bridges for Ekip UP without voltage connections

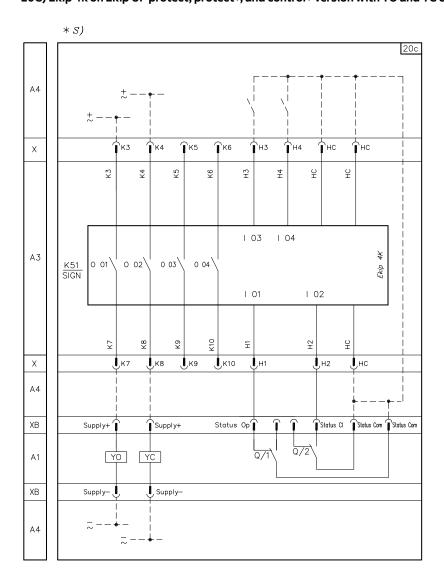



# **Ekip UP unit**

|  | _ | -     | H3<br>K5 | H4<br>K6<br>K10 | E | Rot  | Ge- | -    |        |   | K2<br>K1 |       |   |        |        |        |        |
|--|---|-------|----------|-----------------|---|------|-----|------|--------|---|----------|-------|---|--------|--------|--------|--------|
|  | E | KIP 4 | ‡K       |                 |   | Trip | Uni | t 1/ | )<br>) | Е | KIP :    | Suppl | у | Module | Module | Module | Module |

| НС | H1      | H2 | Н3 | H4  |  |  |  |  |  |  |  |  |  |
|----|---------|----|----|-----|--|--|--|--|--|--|--|--|--|
| НС | К3      | K4 | K5 | K6  |  |  |  |  |  |  |  |  |  |
| НС | K7      | K8 | K9 | K10 |  |  |  |  |  |  |  |  |  |
|    | EKIP 4K |    |    |     |  |  |  |  |  |  |  |  |  |

20A) Ekip 4k on Ekip UP monitor and control version monitor → Monitor


protect → Protect protect+ → Protect+ control → Control control+ → Control+



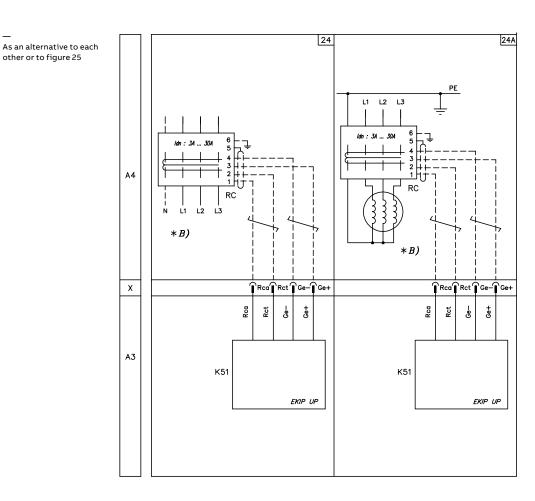
| НС | Н1 | H2    | НЗ | Н4  | Е |      | Ge+              | Szi   |     |    | <2 W   | 4    |   |        |        | Т |        |        | $\neg$ |
|----|----|-------|----|-----|---|------|------------------|-------|-----|----|--------|------|---|--------|--------|---|--------|--------|--------|
| НС | К3 | K4    | K5 | К6  |   | Rct  | Ge-              | Szo   |     |    | < 1 W. | 3    |   |        |        |   |        |        |        |
| НС | K7 | K8    | К9 | K10 | Е | Gzo  | Szc              | Gzi   | Rca |    |        |      |   |        |        |   |        |        |        |
|    | Ε  | KIP 4 | 1K |     | Г | Trip | Uni <sup>-</sup> | t 1/0 | С   | EK | IP Sι  | pply | N | lodule | Module |   | Module | Module | $\neg$ |

| НС | Н1      | H2 | Н3 | H4  |  |  |  |  |  |  |  |  |
|----|---------|----|----|-----|--|--|--|--|--|--|--|--|
| НС | К3      | K4 | K5 | K6  |  |  |  |  |  |  |  |  |
| НС | K7      | K8 | K9 | K10 |  |  |  |  |  |  |  |  |
|    | EKIP 4K |    |    |     |  |  |  |  |  |  |  |  |

### 20C) Ekip 4k on Ekip UP protect, protect+, and control+ version with YO and YC command and 2 status input



# **Ekip UP unit**

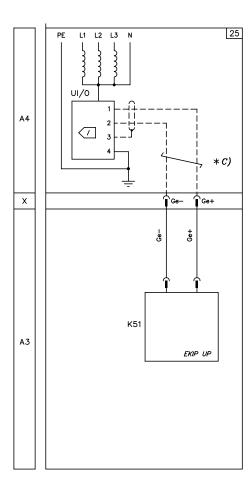

- 15) Ekip UP for residual voltage protection (for protect+ and control + only) with external transformer 16) Ekip UP for residual voltage protection (for protect+ and control + only) without external transformer

other or to figure 25  $\,$ 

| НС | Н1 | H2    | Н3 | H4  | Π |      | Get   | Szi  |     |   | K2 N  | V4         |   |        |   |       |     |     |        |
|----|----|-------|----|-----|---|------|-------|------|-----|---|-------|------------|---|--------|---|-------|-----|-----|--------|
| нс | КЗ | K4    | K5 | К6  |   | Ro   | t Ge- |      |     |   | K1 \  | <b>v</b> 3 |   |        |   |       |     |     |        |
| нс | K7 | K8    | К9 | K10 |   | Gz   | o Szc | Gzi  | Rca |   |       |            |   |        |   |       |     |     |        |
|    | Ε  | KIP 4 | ‡K | -   |   | Trip | Uni   | t 1/ | 0   | E | KIP S | upply      | N | Module | М | odule | Mod | ule | Module |

|   |     | Ge+  | Szi   |     |
|---|-----|------|-------|-----|
|   | Rct | Ge-  | Szo   |     |
|   | Gzo | Szc  | Gzi   | Rca |
| Ţ | rip | Unit | : 1/0 | )   |

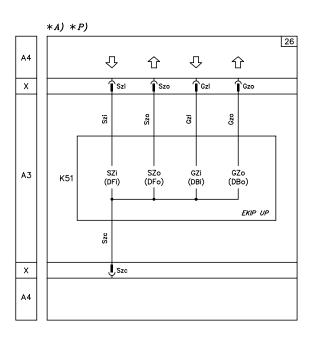
24) RC residual current protection sensor input (ANSI 64&50NTD) 24A) RC differential ground fault protection sensor input (ANSI 87N)



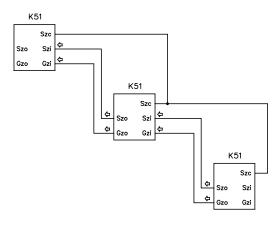

| нс | Н1 | Н2    | нз | Н4  |      | Ge+  | Szi     |   | K2  | W4    |    |     |      |    |       |     |     |        |
|----|----|-------|----|-----|------|------|---------|---|-----|-------|----|-----|------|----|-------|-----|-----|--------|
| НС | К3 | K4    | K5 | К6  | Rct  | Ge-  | Szo     |   | K1  | W3    |    |     |      |    |       |     |     |        |
| нс | K7 | K8    | K9 | K10 | Gzo  | Szc  | Gzi Rcc | 1 |     |       |    |     |      |    |       |     |     |        |
|    | E  | KIP 4 | łK |     | Trip | Unit | : 1/0   | Е | KIP | Suppl | ly | Mod | lule | Мо | odule | Мос | ule | Module |



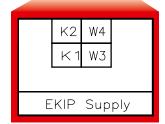
### 25) Transformer star center (homopolar) current sensor input


As an alternative to figures 24-24A

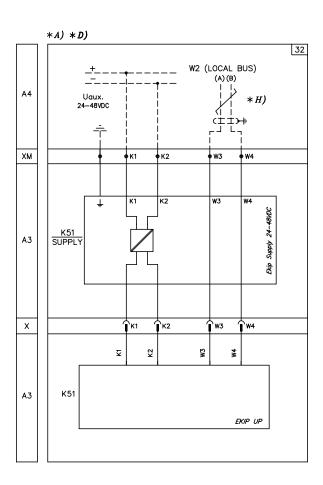



| нс | Н1 | H2    | НЗ | H4  |        | Ge+: | Szi     |   | K2  | W4   |    |    |      |   |       |     |      |   |       |
|----|----|-------|----|-----|--------|------|---------|---|-----|------|----|----|------|---|-------|-----|------|---|-------|
| Н  | К3 | K4    | K5 | K6  | Rct    | Ge-S | Szo     |   | K1  | W3   |    |    |      |   |       |     |      |   |       |
| НС | K7 | K8    | K9 | K10 | Gzo    | Szc  | Gzi Rcc |   |     |      |    |    |      |   |       |     |      |   |       |
|    | E  | KIP 4 | łK |     | Trip l | Unit | 1/0     | E | KIP | Supp | ly | Мс | dule | М | odule | Мос | dule | М | odule |

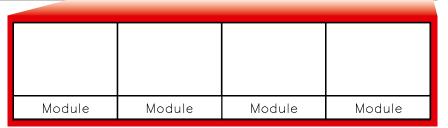



### 26) Zone selectivity



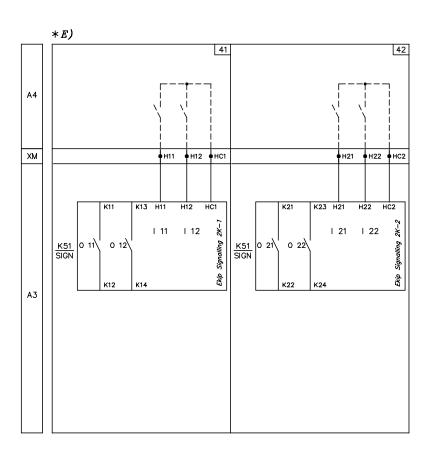

### Example for application diagram (among 3 devices)




|  | _ | -     | H3<br>K5 | H4<br>K6<br>K10 | E | Rot  | Ge- | -    |        |   | K2<br>K1 |        |   |        |   |        |        |        |
|--|---|-------|----------|-----------------|---|------|-----|------|--------|---|----------|--------|---|--------|---|--------|--------|--------|
|  | E | KIP 4 | ‡K       |                 |   | Trip | Uni | t 1/ | )<br>) | Е | KIP :    | Supply | у | Module | Ì | Module | Module | Module |



### 32) Auxiliary supply through module 24-48V DC and local bus



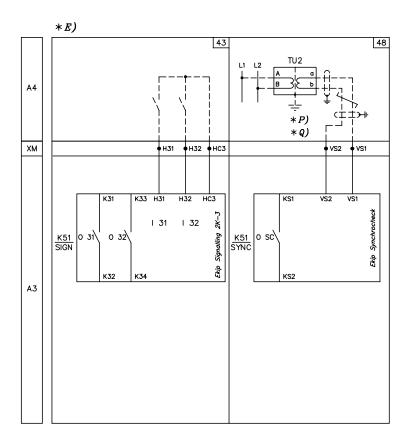

|   | HC      | Ge+ Szi<br>Rct Ge- Szo<br>Gzo Szc Gzi Rca | K2 W4 K1 W3 |        |        |        |        |
|---|---------|-------------------------------------------|-------------|--------|--------|--------|--------|
| ı | EKIP 4K | Trip Unit I/O                             | EKIP Supply | Module | Module | Module | Module |



### 41) Ekip Signalling 2K-1

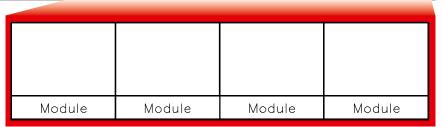
### 42) Ekip Signalling 2K-2



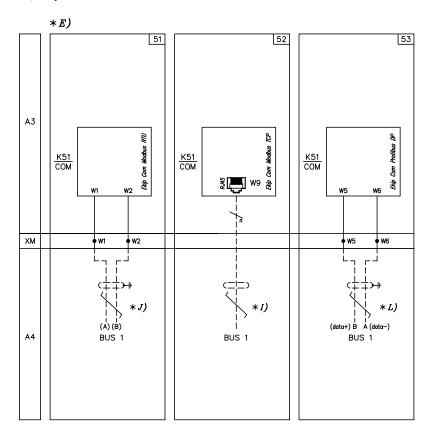

| HC H1 H2 H3 H4<br>HC K3 K4 K5 K6<br>HC K7 K8 K9 K10 | Ge+Szi<br>Rct Ge-Szo<br>Gzo Szc Gzi Rco | K2 W4<br>K1 W3 |        |        |        |        |
|-----------------------------------------------------|-----------------------------------------|----------------|--------|--------|--------|--------|
| EKIP 4K                                             | Trip Unit I/O                           | EKIP Supply    | Module | Module | Module | Module |
|                                                     |                                         |                |        |        |        |        |

Module

Module

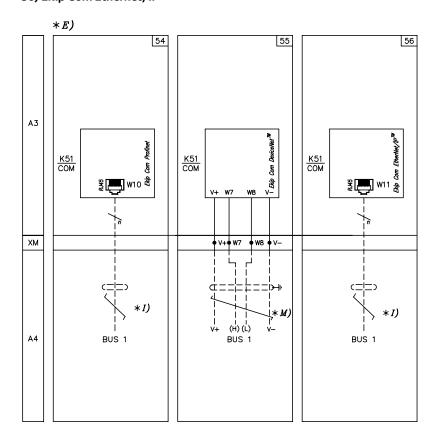

Module

- 43) Ekip Signalling 2K-3
- 44) Ekip Sinchrocheck

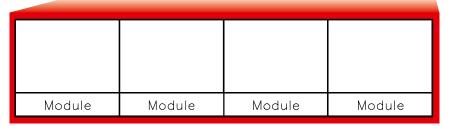



Module

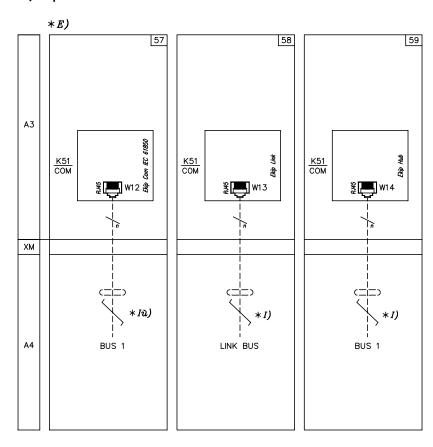
| НС | Н1      | H2 | НЗ | Н4  |  | Ge+       | Szi     | K2 W4       |        |        |        |        |
|----|---------|----|----|-----|--|-----------|---------|-------------|--------|--------|--------|--------|
| НС | К3      | K4 | K5 | К6  |  | Rct Ge-   | Szo     | K1 W3       |        |        |        |        |
| нс | K7      | K8 | K9 | K10 |  | Gzo Szc   | Gzi Rca |             |        |        |        |        |
|    | EKIP 4K |    |    |     |  | Trip Unit | 1/0     | EKIP Supply | Module | Module | Module | Module |




- 51) Ekip Com Modbus RTU
- 52) Ekip Com Modbus TCP
- 53) Ekip Com Profibus DP




| HC H1 H2 H3 H4<br>HC K3 K4 K5 K6<br>HC K7 K8 K9 K10 | Ge+ Szi   K2<br>  Rct Ge- Szo   K1<br>  Gzo Szc Gzi Rco | W4<br>W3      |           |              |
|-----------------------------------------------------|---------------------------------------------------------|---------------|-----------|--------------|
| EKIP 4K                                             | Trip Unit I/O EKIP                                      | Supply Module | Module Mo | odule Module |
|                                                     |                                                         |               |           |              |
|                                                     | Module                                                  | Module        | Module    | Module       |


- 54) Ekip Com Profinet
- 55) Ekip Com Devicenet ™
- 56) Ekip Com Ethernet/IP™

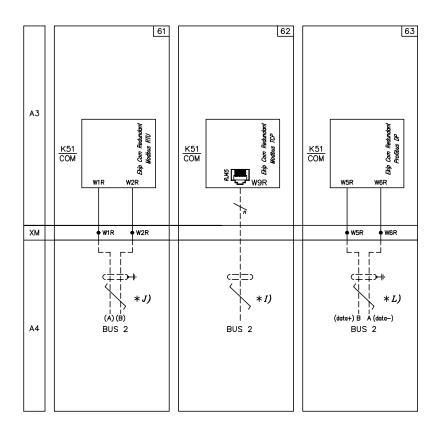


|   |    |    |       |    |     | <br> |      |       |     |    |     |     |     |        |   |        |    |      |        |   |
|---|----|----|-------|----|-----|------|------|-------|-----|----|-----|-----|-----|--------|---|--------|----|------|--------|---|
|   | нс | Н1 | H2    | Н3 | Н4  |      | Ge+  | Szi   |     |    | K2  | W4  |     |        |   |        |    |      |        |   |
| Ш | НС | К3 | K4    | K5 | K6  | Rct  | Ge-  | Szo   |     |    | K1  | w3  |     |        |   |        |    |      |        |   |
| Ш | нс | K7 | K8    | К9 | K10 | Gzo  | Szc  | Gzi   | Rca |    |     |     |     |        |   |        |    |      |        |   |
|   |    | E  | KIP 4 | ‡K |     | Trip | Unit | : 1/0 | C   | El | ΚIP | Sup | ply | Module | N | lodule | Мо | dule | Module | , |



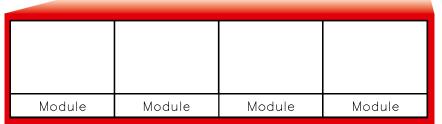
- 57) Ekip Com IEC 61850
- 58) Ekip Link
- 59) Ekip Hub



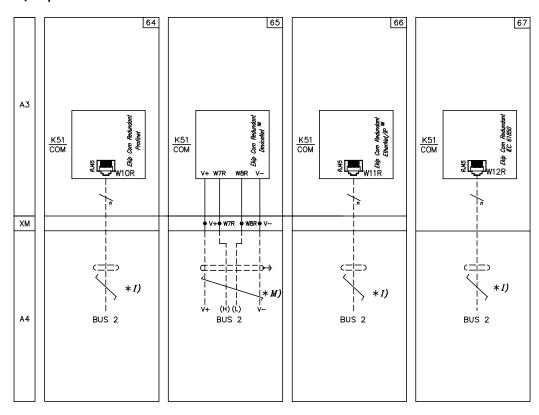

| HC H1 H2 H3 H4<br>HC K3 K4 K5 K6<br>HC K7 K8 K9 K10 | Ge+ Szi<br>Rct Ge- Szo<br>Gzo Szc Gzi Rca | K2 W4<br>K1 W3 |        |        |        |        |
|-----------------------------------------------------|-------------------------------------------|----------------|--------|--------|--------|--------|
| EKIP 4K                                             | Trip Unit I/O                             | EKIP Supply    | Module | Module | Module | Module |
|                                                     |                                           | _              |        |        |        |        |
|                                                     |                                           |                |        |        |        |        |
|                                                     |                                           |                |        |        |        |        |

Module

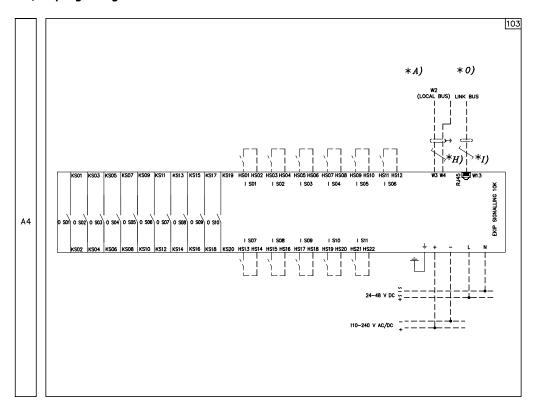
Module


Module

- 61) Ekip Com Redundant Modbus RTU
- 62) Ekip Com Redundant Modbus TCP
- 63) Ekip Com Redundant Profibus DP




Module


| нс      | Н1 | H2 | Н3 | H4  |        | Ge+S  | Szi     |    | K2 W  | 1    |   |       |    |      |     |      |        | $\neg$ |
|---------|----|----|----|-----|--------|-------|---------|----|-------|------|---|-------|----|------|-----|------|--------|--------|
| нс      | К3 | K4 | K5 | K6  | Rct (  | Ge-S  | Szo     |    | K1 ₩. | 3    |   |       |    |      |     |      |        |        |
| нс      | K7 | K8 | K9 | K10 | Gzo S  | Szc ( | Gzi Rca |    |       |      |   |       |    |      |     |      |        |        |
| EKIP 4K |    |    |    |     | Trip l | Jnit  | 1/0     | Ek | IP Su | pply | М | odule | Мо | dule | Мос | dule | Module |        |



- 64) Ekip Com redundant Profinet
- 65) Ekip Com redundant Devicenet ™
- 66) Ekip Com redundant Ethernet/IP  $^{\text{TM}}$
- 67) Ekip Com redundant IEC 61850



### 103) Ekip Signalling 10k



ORDERING CODES 8/3

# Ordering codes

| <b>8/</b> 2  | Instructions for ordering            |
|--------------|--------------------------------------|
| <b>8/</b> 4  | Ekip UP versions                     |
| <b>8/</b> 5  | Ekip UP mandatory accessories        |
| <b>8/</b> 7  | Ekip UP optional accessories         |
| <b>8/</b> 10 | <b>Ekip UP Part Numbering System</b> |

### Instructions for ordering

### Ordering examples

Standard version Ekip UP to be accessorized are identified by commercial codes.

To order Ekip UP unit:

- 1. Choose Ekip UP version with main code.
- 2. Select the mandatory accessories:
  - a. One type of current sensors
  - b. Installed rating plugs related to current sen sor type chosen
  - c. Power supply module
- 3. Select optional accessories, as they can ordered mounted on the unit or loose:
  - a. Cartridge connectivity modules
  - b. Cartridge synchrocheck module
  - c. Cartridge signalling modules Remind that maximum 4 slots can be occupied by cartridge connectivity, signaling and synchrocheck modules in the Ekip UP accessoring area.
  - d. DIN-rail signalling modules
     Remind that maximum 3 pieces of Ekip Signalling 10k can be connected by local bus.

     This limit is not present with Ekip Link connectivity.
  - e. External toroids
  - f. Software functions
    Remind the software compatibility described in Chapter 3.
  - g. Commissioning modules
  - h. Spare parts
  - Loose rating plugs as spare part to change the rated current related to the installed current sensors.

Ekip UP package contains:

- Ekip UP unit
- Current sensors
- · Power supply modules
- Optional cartridge connectivity, synchrocheck, signaling modules

DIN-rail signalling modules (Ekip Signalling 10k, Ekip Signalling Modbus TCP), external toroids, commissioning modules, spare parts, loose rating plugs are provided only external from Ekip UP package.

Standard warranty is 1 year but it can be extended up to 5 years (see chapter 5).

The "Coming soon!" codes can be updated in next version of this catalog.

Here you can find the online configurator

ORDERING CODES 8/3

### Example

Shopping list for the unit with advanced protection to be installed in an existing four-phase plant, rating plug 2500A, Modbus TCP/IP connectivity

and connection to cloud platform, cartridge signalling module, synchrocheck module and 3 pieces of DIN-rail signaling modules for load shedding function:

#### **Ekip UP version**

| Туре              | Code         |
|-------------------|--------------|
| Ekip UP Protect + | 1SDA083361R1 |

#### **Mandatory accessories**

| Туре                  | Code         |  |
|-----------------------|--------------|--|
| Open CS 4P type C 120 | 1SDA083373R1 |  |
| Rating Plug 2500A     | 1SDA074268R1 |  |
| Ekip Supply 24-48Vdc  | 1SDA074173R1 |  |

#### **Optional accessories**

| Туре                     | Code         |
|--------------------------|--------------|
| Ekip Com Modbus TCP      | 1SDA074151R1 |
| Ekip Com Hub             | 1SDA082894R1 |
| Ekip Synchrocheck        | 1SDA074183R1 |
| Ekip Signalling 2K-1     | 1SDA074167R1 |
| Load shedding - adaptive | 1SDA082921R1 |
| Ekip Signalling 10K*     | 1SDA074171R1 |
| Ekip Signalling 10K*     | 1SDA074171R1 |
| Ekip Signalling 10K*     | 1SDA074171R1 |

 $<sup>*</sup>provided\ externally\ from\ package.$ 

# Ekip UP versions



| Туре              | Code         |  |
|-------------------|--------------|--|
| Ekip UP Monitor   | 1SDA083359R1 |  |
| Ekip UP Protect   | 1SDA083360R1 |  |
| Ekip UP Protect + | 1SDA083361R1 |  |
| Ekip UP Control   | 1SDA083362R1 |  |
| Ekip UP Control + | 1SDA083363R1 |  |

ORDERING CODES 8/5

## **Ekip UP**

# Mandatory accessories











| Туре                             | Code         |             |
|----------------------------------|--------------|-------------|
| CS 100-2000A 3P + COPPER type A  | 1SDA083368R1 |             |
| CS 100-2000A 4P + COPPER type A  | 1SDA083369R1 |             |
| CS 2000-4000A 3P + COPPER type A | 1SDA083370R1 |             |
| CS 2000-4000A 4P + COPPER type A | 1SDA083371R1 |             |
| CS 100-400A 3P type B            | 1SDA083364R1 |             |
| CS 100-400A 4P type B            | 1SDA083365R1 |             |
| CS 400-1600A 3P type B           | 1SDA083366R1 |             |
| CS 400-1600A 4P type B           | 1SDA083367R1 |             |
| CS 400-2500A 2P type B shaped    | 1SDA085561R1 | coming soon |
| CS 400-2500A 4P type B shaped    | 1SDA085562R1 | coming soon |
| Open CS 3P type C 100            | 1SDA085566R1 |             |
| Open CS 4P type C 100            | 1SDA085564R1 |             |
| Open CS 3P type C 120            | 1SDA083372R1 |             |
| Open CS 4P type C 120            | 1SDA083373R1 |             |
| Open CS 3P type C 200            | 1SDA085565R1 |             |
| Open CS 4P type C 200            | 1SDA085563R1 |             |
| Open CS 3P type C 290            | 1SDA107696R1 |             |
| Open CS 4P type C 290            | 1SDA107695R1 |             |
| Insertion bridges CS type D      | 1SDA104662R1 |             |

## Mandatory accessories



### **Installed Rating Plugs**

#### Rating plugs mounted on Ekip UP

| Туре                 | Code         |
|----------------------|--------------|
| Rating Plug 100A     | 1SDA074258R1 |
| Rating Plug 200A     | 1SDA074259R1 |
| Rating Plug 250A     | 1SDA074260R1 |
| Rating Plug 400A     | 1SDA074261R1 |
| Rating Plug 600A     | 1SDA079826R1 |
| Rating Plug 630A     | 1SDA074262R1 |
| Rating Plug 800A     | 1SDA074263R1 |
| Rating Plug 1000A    | 1SDA074264R1 |
| Rating Plug 1200A    | 1SDA079828R1 |
| Rating Plug 1250A    | 1SDA074265R1 |
| Rating Plug 1600A    | 1SDA074266R1 |
| Rating Plug 2000A    | 1SDA074267R1 |
| Rating Plug 2500A    | 1SDA074268R1 |
| Rating Plug 3200A    | 1SDA074269R1 |
| Rating Plug 3600A    | 1SDA079829R1 |
| Rating Plug 4000A    | 1SDA074270R1 |
| Rating Plug 5000A    | 1SDA074271R1 |
| Rating Plug 6000A    | 1SDA112838R1 |
| Rating Plug 6300A    | 1SDA112839R1 |
| Rating Plug RC 100A  | 1SDA074288R1 |
| Rating Plug RC 200A  | 1SDA074289R1 |
| Rating Plug RC 250A  | 1SDA074290R1 |
| Rating Plug RC 400A  | 1SDA074291R1 |
| Rating Plug RC 630A  | 1SDA074292R1 |
| Rating Plug RC 800A  | 1SDA074293R1 |
| Rating Plug RC 1250A | 1SDA074294R1 |
| Rating Plug RC 2000A | 1SDA074295R1 |
| Rating Plug RC 3200A | 1SDA074296R1 |
| Rating Plug RC 4000A | 1SDA074297R1 |



### Power supply modules

| Туре                  | Code         |
|-----------------------|--------------|
| Ekip Supply 24-48V DC | 1SDA074173R1 |

## Optional accessories





#### **Cartridge connectivity modules**

| Туре                     | Code         |
|--------------------------|--------------|
| Ekip Com Modbus RS-485   | 1SDA074150R1 |
| Ekip Com Modbus TCP      | 1SDA074151R1 |
| Ekip Com Profibus        | 1SDA074152R1 |
| Ekip Com Profinet        | 1SDA074153R1 |
| Ekip Com DeviceNet™      | 1SDA074154R1 |
| Ekip Com EtherNet/IP™    | 1SDA074155R1 |
| Ekip Com IEC61850        | 1SDA074156R1 |
| Ekip Com Hub             | 1SDA082894R1 |
| Ekip Com R Modbus RS-485 | 1SDA074157R1 |
| Ekip Com R Modbus TCP    | 1SDA074158R1 |
| Ekip Com R Profibus      | 1SDA074159R1 |
| Ekip Com R Profinet      | 1SDA074160R1 |
| Ekip Com R DeviceNet™    | 1SDA074161R1 |
| Ekip Com R EtherNet/IP™  | 1SDA074162R1 |
| Ekip Com R IEC61850      | 1SDA076170R1 |
| Ekip Link                | 1SDA074163R1 |
| Ekip Com OpenADR         | 1SDA085814R1 |



### Cartridge synchrocheck modules

| Туре              | Code         |
|-------------------|--------------|
| Ekip Synchrocheck | 1SDA074183R1 |



#### Cartridge signalling modules

| Туре                                   | Code         |
|----------------------------------------|--------------|
| Ekip Signalling 2K-1                   | 1SDA074167R1 |
| Ekip Signalling 2K-2                   | 1SDA074168R1 |
| Ekip Signalling 2K-3                   | 1SDA074169R1 |
| Ekip Signalling 3T-1 AI - Temp PT1000* | 1SDA085693R1 |
| Ekip Signalling 3T-2 AI - Temp PT1000* | 1SDA085694R1 |

<sup>\*</sup> External probe PT1000 with 3m cable is available as option with 1SDA085695R1 (coming soon!)

### Optional accessories



#### **DIN-rail signalling modules**

| Туре                        | Code         |
|-----------------------------|--------------|
| Ekip Signalling 10k*        | 1SDA074171R1 |
| Ekip Signalling Modbus TCP* | 1SDA082485R1 |

<sup>\*</sup>Only as spare part



#### **External toroids**

### Homopolar toroid for the grounding conductor of the transformer

| Туре                   | Code         |
|------------------------|--------------|
| Homopolar toroid 100A* | 1SDA073743R1 |
| Homopolar toroid 250A* | 1SDA076248R1 |
| Homopolar toroid 400A* | 1SDA076249R1 |
| Homopolar toroid 800A* | 1SDA076250R1 |

<sup>\*</sup>Only as spare part

#### Toroid for differential protection

| Туре                  | Code         |
|-----------------------|--------------|
| Toroid RC small size* | 1SDA073741R1 |
| Toroid RC big size*   | 1SDA073742R1 |

<sup>\*</sup>Only as spare part

#### SW function accessories

| Туре                                    | Code         |
|-----------------------------------------|--------------|
| IPS - Interface Protection              | 1SDA082919R1 |
| Ekip UP single code for IPS (CEI 0-16)* | 1SDA107690R1 |
| Load shedding - adaptive                | 1SDA082921R1 |

<sup>\*</sup> it contains all the accessories needed for Interface Protection System like current insertion bridges, Ekip Synchrocheck, Ekip 2k-1 and the IPS sw function Note: Load Shedding - basic is always supplied in Ekip UP Protect, Protect+ and Control+ versions.



#### **Commissioning modules**

| Туре                                 | Code         |
|--------------------------------------|--------------|
| Ekip T&P - Programming and Test unit | 1SDA066989R1 |
| Ekip TT - Trip Test unit             | 1SDA066988R1 |
| Ekip Programming                     | 1SDA076154R1 |



### **Loose Rating Plugs**

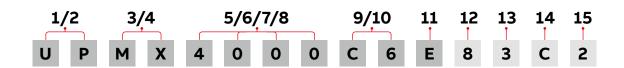
### Rating plug for Ekip UP units as spare parts

| Туре                 | Code         |
|----------------------|--------------|
| Rating Plug 100A     | 1SDA074218R1 |
| Rating Plug 200A     | 1SDA074219R1 |
| Rating Plug 250A     | 1SDA074220R1 |
| Rating Plug 400A     | 1SDA074221R1 |
| Rating Plug 600A     | 1SDA079826R1 |
| Rating Plug 630A     | 1SDA074222R1 |
| Rating Plug 800A     | 1SDA074223R1 |
| Rating Plug 1000A    | 1SDA074224R1 |
| Rating Plug 1200A    | 1SDA079730R1 |
| Rating Plug 1250A    | 1SDA074225R1 |
| Rating Plug 1600A    | 1SDA074226R1 |
| Rating Plug 2000A    | 1SDA074227R1 |
| Rating Plug 2500A    | 1SDA074228R1 |
| Rating Plug 3200A    | 1SDA074229R1 |
| Rating Plug 3600A    | 1SDA079827R1 |
| Rating Plug 4000A    | 1SDA074230R1 |
| Rating Plug 5000A    | 1SDA074231R1 |
| Rating Plug 6000A    | 1SDA079731R1 |
| Rating Plug 6300A    | 1SDA074232R1 |
| Rating Plug RC 100A  | 1SDA074248R1 |
| Rating Plug RC 200A  | 1SDA074249R1 |
| Rating Plug RC 250A  | 1SDA074250R1 |
| Rating Plug RC 400A  | 1SDA074251R1 |
| Rating Plug RC 630A  | 1SDA074252R1 |
| Rating Plug RC 800A  | 1SDA074253R1 |
| Rating Plug RC 1250A | 1SDA074254R1 |
| Rating Plug RC 2000A | 1SDA074255R1 |
| Rating Plug RC 3200A | 1SDA074256R1 |
| Rating Plug RC 4000A | 1SDA074257R1 |

#### **Spare Parts**

| Туре                      | Code         |
|---------------------------|--------------|
| DIN/DOOR installation kit | 1SDA085567R1 |
| Cable kit                 | 1SDA085568R1 |
| Cover                     | 1SDA085569R1 |
| Positioning device type C | 1SDA085570R1 |




# Note: Warranty periods are measured from the date the Ekip UP leaves the factory.

### **Extended warranty**

| Туре             | Code         |  |
|------------------|--------------|--|
| Warranty 2 years | 1SDA104660R1 |  |
| Warranty 4 years | 1SDA085815R1 |  |
| Warranty 5 years | 1SDA104661R1 |  |

### **Ekip UP Part Numbering System**

For United States of America and Canada only



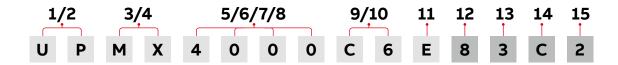
#### 1/2 - Ekip UP Prefix

| Ekip UP Prefix | UP |
|----------------|----|
|                |    |

#### 3/4 - Unit type

| MONITOR      | MX |
|--------------|----|
| PROTECT      | PX |
| CONTROL      | CX |
| PROTECT PLUS | PP |
| CONTROL PLUS | СР |

#### 5/6/7/8 - Ratings


| 100A  | 0100 |
|-------|------|
| 200A  | 0200 |
| 250A  | 0250 |
| 400A  | 0400 |
| 600A  | 0600 |
| 630A  | 0630 |
| 800A  | 0800 |
| 1000A | 1000 |
| 1200A | 1200 |
| 1250A | 1250 |
| 1600A | 1600 |
| 2000A | 2000 |
| 2500A | 2500 |
| 3200A | 3200 |
| 3600A | 3600 |
| 4000A | 4000 |
| 5000A | 5000 |
| 6000A | 6000 |

#### 9/10 - Current sensors

| CS 100-2000A 3P + Copper type A  | A1 |
|----------------------------------|----|
| CS 100-2000A 4P + Copper type A  | A2 |
| CS 2000-4000A 3P + Copper type A | А3 |
| CS 2000-4000A 4P + Copper type A | A4 |
| CS 100-400A 3P type B            | B1 |
| CS 100-400A 4P type B            | B2 |
| CS 400-1600A 3P type B           | В3 |
| CS 400-1600A 4P type B           | В4 |
| CS 400-2500A 3P type B shaped    | B5 |
| CS 400-2500A 4P type B shaped    | В6 |
| Open CS 3P type C 120 4000A MAX  | C3 |
| Open CS 4P type C 120 4000A MAX  | C4 |
| Open CS 3P type C 200 4000A MAX  | C5 |
| Open CS 4P type C 200 4000A MAX  | C6 |
| Open CS 3P type C 290 6000A MAX  | C7 |
| Open CS 4P type C 290 6000A MAX  | C8 |
| Open CS 3P type C 100 1600A MAX  | C9 |
| Open CS 4P type C 100 1600A MAX  | C0 |

#### 11 - Power Supply

|                               |   | _ |
|-------------------------------|---|---|
| E1.2E6.2 Ekip Supply 24-48VDC | D |   |



| 12 - Communication module                      |  |  |
|------------------------------------------------|--|--|
| None                                           |  |  |
| Ekip Com Modbus RS-485                         |  |  |
| Ekip Com Modbus TCP                            |  |  |
| Ekip Com Profibus                              |  |  |
| Ekip Com Profinet                              |  |  |
| Ekip Com DeviceNet™                            |  |  |
| Ekip Com EtherNet/IP™                          |  |  |
| Ekip Com IEC61850                              |  |  |
| Ekip Com Modbus RS-485 + Ekip Com Modbus TCP   |  |  |
| Ekip Com Modbus TCP + Ekip Com Profibus        |  |  |
| Ekip Com Profibus + Ekip Com Profinet          |  |  |
| Ekip Com Profinet + Ekip Com DeviceNet™        |  |  |
| Ekip Com DeviceNet™ + Ekip Com EtherNet/IP™    |  |  |
| Ekip Com EtherNet/IP™ + Ekip Com IEC61850      |  |  |
| Ekip Com Modbus RS-485 + Ekip Com Profibus     |  |  |
| Ekip Com Modbus TCP + Ekip Com Profinet        |  |  |
| Ekip Com Profibus + Ekip Com DeviceNet™        |  |  |
| Ekip Com Profinet + Ekip Com EtherNet/IP™      |  |  |
| Ekip Com DeviceNet™ + Ekip Com IEC61850        |  |  |
| Ekip Com Modbus RS-485 + Ekip Com Profinet     |  |  |
| Ekip Com Modbus TCP + Ekip Com DeviceNet™      |  |  |
| Ekip Com Profibus + Ekip Com EtherNet/IP™      |  |  |
| Ekip Com Profinet + Ekip Com IEC61850          |  |  |
| Ekip Com Modbus RS-485 + Ekip Com DeviceNet™   |  |  |
| Ekip Com Modbus TCP + Ekip Com IEC61850        |  |  |
| Ekip Com Profibus + Ekip Com IEC61850          |  |  |
| Ekip Com Modbus RS-485 + Ekip Com EtherNet/IP™ |  |  |
| Ekip Com Modbus TCP + Ekip Com IEC61850        |  |  |
| Ekip Com Modbus RS-485 + Ekip Com IEC61850     |  |  |
|                                                |  |  |

### 15 - Warranty

| _ |                            |
|---|----------------------------|
| 0 | None                       |
| 2 | Warranty extension 2 years |
| 4 | Warranty extension 4 years |
| 5 | Warranty extension 5 years |

#### 13 - Redundant Communications & Other Modules

| None                             |
|----------------------------------|
| Ekip Com Modbus RS-485           |
| Ekip Com Modbus TCP              |
| Ekip Com Profibus                |
| Ekip Com Profinet                |
| Ekip Com DeviceNet™              |
| Ekip Com EtherNet/IP™            |
| Ekip Com IEC61850                |
| Ekip Link                        |
| Ekip 2k-2 (1)                    |
| Ekip Synchrocheck <sup>(1)</sup> |
| Ekip Com Hub                     |
|                                  |

#### 14 - 2<sup>nd</sup> Redundant Communications & Other **Modules**

| 0 | None                      |
|---|---------------------------|
| 2 | Ekip Com Modbus RS-485    |
| 3 | Ekip Com Modbus TCP       |
| 4 | Ekip Com Profibus         |
| 5 | Ekip Com Profinet         |
| 6 | Ekip Com DeviceNet™       |
| 7 | Ekip Com EtherNet/IP™     |
| 8 | Ekip Com IEC61850         |
| В | Ekip Synchrocheck (1)     |
| С | Ekip 2k-2 (1)             |
| D | Ekip Com Hub              |
| С | Ekip 2k-2 + Ekip 2k-3 (1) |

(1) Ekip 2k and Ekip Synchrocheck are listed according to UL1066. All the other Ekip Signalling and Ekip Com accessories are listed according to UL 508 - CSA C22.2 No. 14-13 and UL 1066.

#### **Accessories**

| Installation kit DIN/DOOR Ekip UP UF | CENDTYC |
|--------------------------------------|---------|
|                                      | CENDITO |
| - 11 11: 11 11-                      | DDKIT   |
| Cable kit Ext 4p Ekip UP UF          | CABKIT  |
| Transparent Cover Ekip UP UF         | COV     |



ABB S.p.A.

5, Via Pescaria I-24123, Bergamo Phone: +39 035 395.111

abb.com/low-voltage

